test_cudnn_grucell.py 8.4 KB
Newer Older
X
Xing Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17 18

import numpy as np

X
Xing Wu 已提交
19 20
import paddle.fluid as fluid
import paddle.fluid.core as core
X
Xing Wu 已提交
21
from paddle.fluid.dygraph import GRUCell
X
Xing Wu 已提交
22 23 24 25 26

np.random.seed = 123


def sigmoid(x):
27
    return 1.0 / (1.0 + np.exp(-x))
X
Xing Wu 已提交
28 29 30


def tanh(x):
31
    return 2.0 * sigmoid(2.0 * x) - 1.0
X
Xing Wu 已提交
32 33


34 35 36
def cudnn_step(
    step_input_np, pre_hidden_np, weight_ih, bias_ih, weight_hh, bias_hh
):
37
    igates = np.matmul(step_input_np, weight_ih.transpose(1, 0))
X
Xing Wu 已提交
38
    igates += bias_ih
39
    hgates = np.matmul(pre_hidden_np, weight_hh.transpose(1, 0))
X
Xing Wu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    hgates += bias_hh

    chunked_igates = np.split(igates, indices_or_sections=3, axis=1)
    chunked_hgates = np.split(hgates, indices_or_sections=3, axis=1)

    reset_gate = chunked_igates[0] + chunked_hgates[0]
    reset_gate = sigmoid(reset_gate)

    input_gate = chunked_igates[1] + chunked_hgates[1]
    input_gate = sigmoid(input_gate)

    _temp = reset_gate * chunked_hgates[2]
    new_gate = chunked_igates[2] + _temp
    new_gate = tanh(new_gate)

    new_hidden = (pre_hidden_np - new_gate) * input_gate + new_gate

    return new_hidden


60 61 62
def non_cudnn_step(
    step_in, pre_hidden, gate_w, gate_b, candidate_w, candidate_b
):
X
Xing Wu 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    concat_1 = np.concatenate([step_in, pre_hidden], 1)

    gate_input = np.matmul(concat_1, gate_w)
    gate_input += gate_b
    gate_input = sigmoid(gate_input)
    r, u = np.split(gate_input, indices_or_sections=2, axis=1)

    r_hidden = r * pre_hidden

    candidate = np.matmul(np.concatenate([step_in, r_hidden], 1), candidate_w)

    candidate += candidate_b
    c = tanh(candidate)

    new_hidden = u * pre_hidden + (1 - u) * c

    return new_hidden


class TestCudnnGRU(unittest.TestCase):
    def setUp(self):
        self.input_size = 100
        self.hidden_size = 200
        self.batch_size = 64

    def test_run(self):

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with fluid.dygraph.guard(place):
            param_attr = fluid.ParamAttr(name="param_attr")
            bias_attr = fluid.ParamAttr(name="bias_attr")
98 99 100
            named_cudnn_gru = GRUCell(
                self.hidden_size, self.input_size, param_attr, bias_attr
            )
X
Xing Wu 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114
            cudnn_gru = GRUCell(self.hidden_size, self.input_size)

            param_list = cudnn_gru.state_dict()
            named_param_list = named_cudnn_gru.state_dict()

            # process weight and bias

            weight_ih_name = "_weight_ih"
            bias_ih_name = "_bias_ih"
            weight_hh_name = "_weight_hh"
            bias_hh_name = "_bias_hh"

            weight_ih = param_list[weight_ih_name].numpy()
            weight_ih = np.random.uniform(
115 116
                -0.1, 0.1, size=weight_ih.shape
            ).astype('float64')
X
Xing Wu 已提交
117 118 119 120
            param_list[weight_ih_name].set_value(weight_ih)
            named_param_list[weight_ih_name].set_value(weight_ih)

            bias_ih = param_list[bias_ih_name].numpy()
121 122 123
            bias_ih = np.random.uniform(-0.1, 0.1, size=bias_ih.shape).astype(
                'float64'
            )
X
Xing Wu 已提交
124 125 126 127 128
            param_list[bias_ih_name].set_value(bias_ih)
            named_param_list[bias_ih_name].set_value(bias_ih)

            weight_hh = param_list[weight_hh_name].numpy()
            weight_hh = np.random.uniform(
129 130
                -0.1, 0.1, size=weight_hh.shape
            ).astype('float64')
X
Xing Wu 已提交
131 132 133 134
            param_list[weight_hh_name].set_value(weight_hh)
            named_param_list[weight_hh_name].set_value(weight_hh)

            bias_hh = param_list[bias_hh_name].numpy()
135 136 137
            bias_hh = np.random.uniform(-0.1, 0.1, size=bias_hh.shape).astype(
                'float64'
            )
X
Xing Wu 已提交
138 139 140
            param_list[bias_hh_name].set_value(bias_hh)
            named_param_list[bias_hh_name].set_value(bias_hh)

141
            step_input_np = np.random.uniform(
142 143
                -0.1, 0.1, (self.batch_size, self.input_size)
            ).astype('float64')
144
            pre_hidden_np = np.random.uniform(
145 146
                -0.1, 0.1, (self.batch_size, self.hidden_size)
            ).astype('float64')
X
Xing Wu 已提交
147 148 149 150 151 152

            step_input_var = fluid.dygraph.to_variable(step_input_np)
            pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np)
            api_out = cudnn_gru(step_input_var, pre_hidden_var)
            named_api_out = named_cudnn_gru(step_input_var, pre_hidden_var)

153 154 155
        np_out = cudnn_step(
            step_input_np, pre_hidden_np, weight_ih, bias_ih, weight_hh, bias_hh
        )
X
Xing Wu 已提交
156

157
        np.testing.assert_allclose(api_out.numpy(), np_out, rtol=1e-05, atol=0)
158 159 160
        np.testing.assert_allclose(
            named_api_out.numpy(), np_out, rtol=1e-05, atol=0
        )
X
Xing Wu 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178


class TestNonCudnnGRU(unittest.TestCase):
    def setUp(self):
        self.input_size = 100
        self.hidden_size = 200
        self.batch_size = 64

    def test_run(self):

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with fluid.dygraph.guard(place):
            param_attr = fluid.ParamAttr(name="param_attr")
            bias_attr = fluid.ParamAttr(name="bias_attr")
179 180 181 182 183 184 185 186 187 188
            named_non_cudnn_gru = GRUCell(
                self.hidden_size,
                self.input_size,
                param_attr,
                bias_attr,
                use_cudnn_impl=False,
            )
            non_cudnn_gru = GRUCell(
                self.hidden_size, self.input_size, use_cudnn_impl=False
            )
X
Xing Wu 已提交
189 190 191 192 193 194 195 196 197 198 199 200

            param_list = non_cudnn_gru.state_dict()
            named_param_list = named_non_cudnn_gru.state_dict()

            # process weight and bias

            gate_w_name = "_gate_weight"
            gate_b_name = "_gate_bias"
            candidate_w_name = "_candidate_weight"
            candidate_b_name = "_candidate_bias"

            gate_w = param_list[gate_w_name].numpy()
201 202 203
            gate_w = np.random.uniform(-0.1, 0.1, size=gate_w.shape).astype(
                'float64'
            )
X
Xing Wu 已提交
204 205 206 207
            param_list[gate_w_name].set_value(gate_w)
            named_param_list[gate_w_name].set_value(gate_w)

            gate_b = param_list[gate_b_name].numpy()
208 209 210
            gate_b = np.random.uniform(-0.1, 0.1, size=gate_b.shape).astype(
                'float64'
            )
X
Xing Wu 已提交
211 212 213 214 215
            param_list[gate_b_name].set_value(gate_b)
            named_param_list[gate_b_name].set_value(gate_b)

            candidate_w = param_list[candidate_w_name].numpy()
            candidate_w = np.random.uniform(
216 217
                -0.1, 0.1, size=candidate_w.shape
            ).astype('float64')
X
Xing Wu 已提交
218 219 220 221 222
            param_list[candidate_w_name].set_value(candidate_w)
            named_param_list[candidate_w_name].set_value(candidate_w)

            candidate_b = param_list[candidate_b_name].numpy()
            candidate_b = np.random.uniform(
223 224
                -0.1, 0.1, size=candidate_b.shape
            ).astype('float64')
X
Xing Wu 已提交
225 226 227
            param_list[candidate_b_name].set_value(candidate_b)
            named_param_list[candidate_b_name].set_value(candidate_b)

228
            step_input_np = np.random.uniform(
229 230
                -0.1, 0.1, (self.batch_size, self.input_size)
            ).astype('float64')
231
            pre_hidden_np = np.random.uniform(
232 233
                -0.1, 0.1, (self.batch_size, self.hidden_size)
            ).astype('float64')
X
Xing Wu 已提交
234 235 236 237 238 239

            step_input_var = fluid.dygraph.to_variable(step_input_np)
            pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np)
            api_out = non_cudnn_gru(step_input_var, pre_hidden_var)
            named_api_out = named_non_cudnn_gru(step_input_var, pre_hidden_var)

240 241 242 243 244 245 246 247
        np_out = non_cudnn_step(
            step_input_np,
            pre_hidden_np,
            gate_w,
            gate_b,
            candidate_w,
            candidate_b,
        )
X
Xing Wu 已提交
248

249
        np.testing.assert_allclose(api_out.numpy(), np_out, rtol=1e-05, atol=0)
250 251 252
        np.testing.assert_allclose(
            named_api_out.numpy(), np_out, rtol=1e-05, atol=0
        )
X
Xing Wu 已提交
253 254 255 256


if __name__ == '__main__':
    unittest.main()