test_cudnn_grucell.py 8.7 KB
Newer Older
X
Xing Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
X
Xing Wu 已提交
18
from paddle.fluid.dygraph import GRUCell
X
Xing Wu 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

import numpy as np

np.random.seed = 123


def sigmoid(x):
    return 1. / (1. + np.exp(-x))


def tanh(x):
    return 2. * sigmoid(2. * x) - 1.


def cudnn_step(step_input_np, pre_hidden_np, weight_ih, bias_ih, weight_hh,
               bias_hh):
35
    igates = np.matmul(step_input_np, weight_ih.transpose(1, 0))
X
Xing Wu 已提交
36
    igates += bias_ih
37
    hgates = np.matmul(pre_hidden_np, weight_hh.transpose(1, 0))
X
Xing Wu 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    hgates += bias_hh

    chunked_igates = np.split(igates, indices_or_sections=3, axis=1)
    chunked_hgates = np.split(hgates, indices_or_sections=3, axis=1)

    reset_gate = chunked_igates[0] + chunked_hgates[0]
    reset_gate = sigmoid(reset_gate)

    input_gate = chunked_igates[1] + chunked_hgates[1]
    input_gate = sigmoid(input_gate)

    _temp = reset_gate * chunked_hgates[2]
    new_gate = chunked_igates[2] + _temp
    new_gate = tanh(new_gate)

    new_hidden = (pre_hidden_np - new_gate) * input_gate + new_gate

    return new_hidden


def non_cudnn_step(step_in, pre_hidden, gate_w, gate_b, candidate_w,
                   candidate_b):
    concat_1 = np.concatenate([step_in, pre_hidden], 1)

    gate_input = np.matmul(concat_1, gate_w)
    gate_input += gate_b
    gate_input = sigmoid(gate_input)
    r, u = np.split(gate_input, indices_or_sections=2, axis=1)

    r_hidden = r * pre_hidden

    candidate = np.matmul(np.concatenate([step_in, r_hidden], 1), candidate_w)

    candidate += candidate_b
    c = tanh(candidate)

    new_hidden = u * pre_hidden + (1 - u) * c

    return new_hidden


class TestCudnnGRU(unittest.TestCase):
80

X
Xing Wu 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    def setUp(self):
        self.input_size = 100
        self.hidden_size = 200
        self.batch_size = 64

    def test_run(self):

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with fluid.dygraph.guard(place):
            param_attr = fluid.ParamAttr(name="param_attr")
            bias_attr = fluid.ParamAttr(name="bias_attr")
            named_cudnn_gru = GRUCell(self.hidden_size, self.input_size,
                                      param_attr, bias_attr)
            cudnn_gru = GRUCell(self.hidden_size, self.input_size)

            param_list = cudnn_gru.state_dict()
            named_param_list = named_cudnn_gru.state_dict()

            # process weight and bias

            weight_ih_name = "_weight_ih"
            bias_ih_name = "_bias_ih"
            weight_hh_name = "_weight_hh"
            bias_hh_name = "_bias_hh"

            weight_ih = param_list[weight_ih_name].numpy()
            weight_ih = np.random.uniform(
                -0.1, 0.1, size=weight_ih.shape).astype('float64')
            param_list[weight_ih_name].set_value(weight_ih)
            named_param_list[weight_ih_name].set_value(weight_ih)

            bias_ih = param_list[bias_ih_name].numpy()
117 118
            bias_ih = np.random.uniform(-0.1, 0.1,
                                        size=bias_ih.shape).astype('float64')
X
Xing Wu 已提交
119 120 121 122 123 124 125 126 127 128
            param_list[bias_ih_name].set_value(bias_ih)
            named_param_list[bias_ih_name].set_value(bias_ih)

            weight_hh = param_list[weight_hh_name].numpy()
            weight_hh = np.random.uniform(
                -0.1, 0.1, size=weight_hh.shape).astype('float64')
            param_list[weight_hh_name].set_value(weight_hh)
            named_param_list[weight_hh_name].set_value(weight_hh)

            bias_hh = param_list[bias_hh_name].numpy()
129 130
            bias_hh = np.random.uniform(-0.1, 0.1,
                                        size=bias_hh.shape).astype('float64')
X
Xing Wu 已提交
131 132 133
            param_list[bias_hh_name].set_value(bias_hh)
            named_param_list[bias_hh_name].set_value(bias_hh)

134 135 136 137 138
            step_input_np = np.random.uniform(
                -0.1, 0.1, (self.batch_size, self.input_size)).astype('float64')
            pre_hidden_np = np.random.uniform(
                -0.1, 0.1,
                (self.batch_size, self.hidden_size)).astype('float64')
X
Xing Wu 已提交
139 140 141 142 143 144 145 146 147

            step_input_var = fluid.dygraph.to_variable(step_input_np)
            pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np)
            api_out = cudnn_gru(step_input_var, pre_hidden_var)
            named_api_out = named_cudnn_gru(step_input_var, pre_hidden_var)

        np_out = cudnn_step(step_input_np, pre_hidden_np, weight_ih, bias_ih,
                            weight_hh, bias_hh)

148 149 150 151 152
        np.testing.assert_allclose(api_out.numpy(), np_out, rtol=1e-05, atol=0)
        np.testing.assert_allclose(named_api_out.numpy(),
                                   np_out,
                                   rtol=1e-05,
                                   atol=0)
X
Xing Wu 已提交
153 154 155


class TestNonCudnnGRU(unittest.TestCase):
156

X
Xing Wu 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    def setUp(self):
        self.input_size = 100
        self.hidden_size = 200
        self.batch_size = 64

    def test_run(self):

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with fluid.dygraph.guard(place):
            param_attr = fluid.ParamAttr(name="param_attr")
            bias_attr = fluid.ParamAttr(name="bias_attr")
172 173 174 175 176 177 178 179
            named_non_cudnn_gru = GRUCell(self.hidden_size,
                                          self.input_size,
                                          param_attr,
                                          bias_attr,
                                          use_cudnn_impl=False)
            non_cudnn_gru = GRUCell(self.hidden_size,
                                    self.input_size,
                                    use_cudnn_impl=False)
X
Xing Wu 已提交
180 181 182 183 184 185 186 187 188 189 190 191

            param_list = non_cudnn_gru.state_dict()
            named_param_list = named_non_cudnn_gru.state_dict()

            # process weight and bias

            gate_w_name = "_gate_weight"
            gate_b_name = "_gate_bias"
            candidate_w_name = "_candidate_weight"
            candidate_b_name = "_candidate_bias"

            gate_w = param_list[gate_w_name].numpy()
192 193
            gate_w = np.random.uniform(-0.1, 0.1,
                                       size=gate_w.shape).astype('float64')
X
Xing Wu 已提交
194 195 196 197
            param_list[gate_w_name].set_value(gate_w)
            named_param_list[gate_w_name].set_value(gate_w)

            gate_b = param_list[gate_b_name].numpy()
198 199
            gate_b = np.random.uniform(-0.1, 0.1,
                                       size=gate_b.shape).astype('float64')
X
Xing Wu 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
            param_list[gate_b_name].set_value(gate_b)
            named_param_list[gate_b_name].set_value(gate_b)

            candidate_w = param_list[candidate_w_name].numpy()
            candidate_w = np.random.uniform(
                -0.1, 0.1, size=candidate_w.shape).astype('float64')
            param_list[candidate_w_name].set_value(candidate_w)
            named_param_list[candidate_w_name].set_value(candidate_w)

            candidate_b = param_list[candidate_b_name].numpy()
            candidate_b = np.random.uniform(
                -0.1, 0.1, size=candidate_b.shape).astype('float64')
            param_list[candidate_b_name].set_value(candidate_b)
            named_param_list[candidate_b_name].set_value(candidate_b)

215 216 217 218 219
            step_input_np = np.random.uniform(
                -0.1, 0.1, (self.batch_size, self.input_size)).astype('float64')
            pre_hidden_np = np.random.uniform(
                -0.1, 0.1,
                (self.batch_size, self.hidden_size)).astype('float64')
X
Xing Wu 已提交
220 221 222 223 224 225 226 227 228

            step_input_var = fluid.dygraph.to_variable(step_input_np)
            pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np)
            api_out = non_cudnn_gru(step_input_var, pre_hidden_var)
            named_api_out = named_non_cudnn_gru(step_input_var, pre_hidden_var)

        np_out = non_cudnn_step(step_input_np, pre_hidden_np, gate_w, gate_b,
                                candidate_w, candidate_b)

229 230 231 232 233
        np.testing.assert_allclose(api_out.numpy(), np_out, rtol=1e-05, atol=0)
        np.testing.assert_allclose(named_api_out.numpy(),
                                   np_out,
                                   rtol=1e-05,
                                   atol=0)
X
Xing Wu 已提交
234 235 236 237


if __name__ == '__main__':
    unittest.main()