program_config.py 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import enum
16
from typing import Any, Callable, Dict, List, Optional
17

18
import numpy as np
19

20 21 22
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
23
from paddle.fluid.executor import global_scope
24 25 26 27 28 29 30
from paddle.fluid.framework import (
    IrGraph,
    IrNode,
    Operator,
    convert_np_dtype_to_dtype_,
)
from paddle.fluid.initializer import NumpyArrayInitializer
31 32 33 34
from paddle.static.quantization import (
    QuantizationFreezePass,
    QuantizationTransformPass,
)
35

36 37 38 39 40 41

class TensorConfig:
    '''
    A config builder for a input or a weight.
    '''

42 43 44 45 46 47
    def __init__(
        self,
        lod: Optional[List[List[int]]] = None,
        data_gen: Optional[Callable[..., np.array]] = None,
        shape: Optional[List[List[int]]] = None,
    ):
48 49 50
        '''
        shape: The shape of the tensor.
        dtype: The data type of the tensor.
51
        data: The value of WeightVar. for input, it should be None
52
        '''
W
Wilber 已提交
53
        self.lod = lod
J
Jason 已提交
54 55 56 57 58 59
        if data_gen is not None:
            self.data_gen = data_gen
            self.data = data_gen()
            self.dtype = data_gen().dtype
            self.shape = data_gen().shape
        else:
60 61 62
            assert (
                shape is not None
            ), "While data_gen is not defined, shape must not be None"
J
Jason 已提交
63 64 65
            self.data = np.random.normal(0.0, 1.0, shape).astype(np.float32)
            self.shape = shape
            self.dtype = self.data.dtype
66 67 68

    def __repr__(self):
        return str({'shape': self.shape, 'lod': self.lod, 'dtype': self.dtype})
69 70


W
Wilber 已提交
71 72 73 74 75 76
class VarType(enum.Enum):
    LOD_TENSOR = 1
    LOD_TENSOR_ARRAY = 2
    STEP_SCOPES = 3


77
class OpConfig:
78 79 80 81 82 83 84 85 86 87 88 89
    '''A config builder for generating a Op.'''

    def __init__(
        self,
        type: str,
        inputs: Dict[str, List[str]],
        outputs: Dict[str, List[str]],
        attrs: Dict[str, Any] = None,
        outputs_var_type: Dict[str, VarType] = None,
        outputs_dtype: Dict[str, np.dtype] = None,
        **kwargs,
    ):
90 91 92
        self.type = type
        self.inputs = inputs
        self.outputs = outputs
W
Wilber 已提交
93 94
        self.outputs_dtype = outputs_dtype
        self.outputs_var_type = outputs_var_type
95
        self.attrs = attrs
J
Jason 已提交
96 97 98
        if self.attrs is None:
            self.attrs = dict()
        self.attrs.update(kwargs)
99

100 101 102 103 104
    def __repr__(self):
        log_str = self.type
        log_str += str(self.attrs)
        return log_str

105

W
Wilber 已提交
106
_OP_WITHOUT_KERNEL_SET = {
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    'feed',
    'fetch',
    'recurrent',
    'go',
    'rnn_memory_helper_grad',
    'conditional_block',
    'while',
    'send',
    'recv',
    'listen_and_serv',
    'fl_listen_and_serv',
    'ncclInit',
    'select',
    'checkpoint_notify',
    'gen_bkcl_id',
    'c_gen_bkcl_id',
    'gen_nccl_id',
    'c_gen_nccl_id',
    'c_comm_init',
    'c_sync_calc_stream',
    'c_sync_comm_stream',
    'queue_generator',
    'dequeue',
    'enqueue',
    'heter_listen_and_serv',
    'c_wait_comm',
    'c_wait_compute',
    'c_gen_hccl_id',
    'c_comm_init_hccl',
    'copy_cross_scope',
W
Wilber 已提交
137 138 139 140
}


class BlockConfig:
141 142 143 144 145 146 147 148 149 150
    '''A config builder for generating a Block.'''

    def __init__(
        self,
        ops: List[OpConfig],
        vars: List[str],
        vars_dtype: Dict[str, np.dtype] = None,
        vars_var_type: Dict[str, VarType] = None,
        vars_lod_level: Dict[str, int] = None,
    ):
W
Wilber 已提交
151 152 153 154 155 156 157 158
        self.ops = ops
        self.vars = vars
        self.vars_dtype = vars_dtype
        self.vars_var_type = vars_var_type
        self.vars_lod_level = vars_lod_level

    def fill_block_desc(self, block_desc):
        for name in self.vars:
159
            var_desc = block_desc.var(name.encode())
W
Wilber 已提交
160
            var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
161 162 163
            if (
                self.vars_lod_level is not None
                and name in self.vars_lod_level.keys()
W
Wilber 已提交
164 165
            ):
                var_desc.set_lod_level(self.vars_lod_level[name])
166 167 168
            if (
                self.vars_var_type is not None
                and name in self.vars_var_type.keys()
W
Wilber 已提交
169 170 171 172 173 174 175 176 177
            ):
                if self.vars_var_type[name] == VarType.LOD_TENSOR_ARRAY:
                    var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR_ARRAY)
                elif self.vars_var_type[name] == VarType.STEP_SCOPES:
                    var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                    continue
            var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
            if self.vars_dtype is not None and name in self.vars_dtype.keys():
                var_desc.set_dtype(
178 179
                    convert_np_dtype_to_dtype_(self.vars_dtype[name])
                )
W
Wilber 已提交
180 181 182 183 184 185 186 187 188 189 190

        for op_config in self.ops:
            op_desc = block_desc.append_op()
            op_desc.set_type(op_config.type)
            for name, values in op_config.inputs.items():
                op_desc.set_input(name, values)
            for name, values in op_config.attrs.items():
                op_desc._set_attr(name, values)
            for name, values in op_config.outputs.items():
                op_desc.set_output(name, values)
                for v in values:
191
                    if block_desc.has_var_recursive(v.encode()):
W
Wilber 已提交
192
                        continue
193
                    var_desc = block_desc.var(v.encode())
W
Wilber 已提交
194
                    var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
195 196 197
                    if (
                        op_config.outputs_var_type is not None
                        and v in op_config.outputs_var_type.keys()
W
Wilber 已提交
198
                    ):
199 200 201 202
                        if (
                            op_config.outputs_var_type[v]
                            == VarType.LOD_TENSOR_ARRAY
                        ):
W
Wilber 已提交
203
                            var_desc.set_type(
204 205 206 207 208
                                core.VarDesc.VarType.LOD_TENSOR_ARRAY
                            )
                        elif (
                            op_config.outputs_var_type[v] == VarType.STEP_SCOPES
                        ):
W
Wilber 已提交
209 210 211
                            var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                            continue
                    var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
212 213 214
                    if (
                        op_config.outputs_dtype is not None
                        and v in op_config.outputs_dtype.keys()
W
Wilber 已提交
215 216
                    ):
                        var_desc.set_dtype(
217
                            convert_np_dtype_to_dtype_(
218 219 220
                                op_config.outputs_dtype[v]
                            )
                        )
W
Wilber 已提交
221 222 223 224 225 226
            if op_config.type not in _OP_WITHOUT_KERNEL_SET:
                op_desc.infer_var_type(block_desc)
                op_desc.infer_shape(block_desc)
            op_desc.check_attrs()


227
class ProgramConfig:
228 229 230 231 232 233 234 235 236
    '''A config builder for generating a Program.'''

    def __init__(
        self,
        ops: List[OpConfig],
        weights: Dict[str, TensorConfig],
        inputs: Dict[str, TensorConfig],
        outputs: List[str],
    ):
237
        self.ops = ops
W
Wilber 已提交
238 239 240 241 242 243 244 245 246 247 248
        # if no weight need to save, we create a place_holder to help seriazlie params.
        if not weights:

            def generate_weight():
                return np.array([1]).astype(np.float32)

            self.weights = {
                "place_holder_weight": TensorConfig(data_gen=generate_weight)
            }
        else:
            self.weights = weights
249 250 251
        self.inputs = inputs
        self.outputs = outputs

252 253 254 255 256 257 258 259 260 261
    def __repr__(self):
        log_str = ''
        for i in range(len(self.ops)):
            if i != len(self.ops) - 1:
                log_str += repr(self.ops[i]) + ' + '
            else:
                log_str += repr(self.ops[i])
        log_str += ' -- '
        for t, v in self.inputs.items():
            log_str += '[' + t + ': ' + str(v) + ']'
262 263
        for t, v in self.weights.items():
            log_str += '[' + t + ': ' + str(v) + ']'
264 265 266

        return log_str

267 268

def create_fake_model(program_config):
269
    '''Create a Paddle model(in memory) according to the given config.'''
270 271 272 273 274
    paddle.enable_static()
    main_program_desc = core.ProgramDesc()
    util_program = fluid.Program()
    main_block_desc = main_program_desc.block(0)

275
    var_desc = main_block_desc.var(b"feed")
276 277 278 279 280
    var_desc.set_type(core.VarDesc.VarType.FEED_MINIBATCH)
    var_desc.set_persistable(True)

    index = 0
    for name, tensor_config in program_config.inputs.items():
281
        var_desc = main_block_desc.var(name.encode())
282 283 284 285
        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
        var_desc.set_dtype(convert_np_dtype_to_dtype_(tensor_config.dtype))
        var_desc.set_shape(tensor_config.shape)
        var_desc.set_need_check_feed(True)
W
Wilber 已提交
286 287
        if tensor_config.lod is not None:
            var_desc.set_lod_level(len(tensor_config.lod))
288 289 290 291 292 293 294 295 296
        op_desc = main_block_desc._prepend_op()
        op_desc.set_type("feed")
        op_desc.set_input('X', ["feed"])
        op_desc.set_output('Out', [name])
        op_desc._set_attr("col", index)
        index = index + 1

    save_var_map = {}
    for name, tensor_config in program_config.weights.items():
297
        var_desc = main_block_desc.var(name.encode())
298 299 300 301 302 303 304 305 306 307
        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
        var_desc.set_dtype(convert_np_dtype_to_dtype_(tensor_config.dtype))
        var_desc.set_shape(tensor_config.shape)
        var_desc.set_persistable(True)

        save_var_map[name] = util_program.global_block().create_parameter(
            dtype=tensor_config.dtype,
            shape=tensor_config.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            name=name,
308 309
            initializer=NumpyArrayInitializer(tensor_config.data),
        )
310 311 312 313 314
    in_vars = []
    for name in sorted(save_var_map.keys()):
        in_vars.append(save_var_map[name])

    out_var = util_program.global_block().create_var(
315 316
        type=core.VarDesc.VarType.RAW, name="out_var_0"
    )
317
    out_var.desc.set_persistable(True)
318 319 320 321 322 323
    util_program.global_block().append_op(
        type='save_combine',
        inputs={'X': in_vars},
        outputs={'Y': out_var},
        attrs={'file_path': '', 'save_to_memory': True},
    )
324 325 326 327 328 329
    for op_config in program_config.ops:
        op_desc = main_block_desc.append_op()
        op_desc.set_type(op_config.type)
        for name, values in op_config.inputs.items():
            op_desc.set_input(name, values)
        for name, values in op_config.attrs.items():
W
Wilber 已提交
330 331 332 333 334 335
            if name == 'sub_block':
                sub_block_desc = main_program_desc.append_block(main_block_desc)
                values.fill_block_desc(sub_block_desc)
                op_desc._set_attr(name, sub_block_desc)
            else:
                op_desc._set_attr(name, values)
336 337
        for name, values in op_config.outputs.items():
            op_desc.set_output(name, values)
338
            for v in values:
339
                if main_block_desc.has_var_recursive(v.encode()):
W
Wilber 已提交
340
                    continue
341
                var_desc = main_block_desc.var(v.encode())
342
                var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
343 344 345
                if (
                    op_config.outputs_var_type is not None
                    and v in op_config.outputs_var_type.keys()
W
Wilber 已提交
346
                ):
347 348 349 350
                    if (
                        op_config.outputs_var_type[v]
                        == VarType.LOD_TENSOR_ARRAY
                    ):
W
Wilber 已提交
351 352 353 354 355
                        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR_ARRAY)
                    elif op_config.outputs_var_type[v] == VarType.STEP_SCOPES:
                        var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                        continue
                var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
356 357 358
                if (
                    op_config.outputs_dtype is not None
                    and v in op_config.outputs_dtype.keys()
W
Wilber 已提交
359 360
                ):
                    var_desc.set_dtype(
361 362
                        convert_np_dtype_to_dtype_(op_config.outputs_dtype[v])
                    )
W
Wilber 已提交
363 364 365 366
        if op_config.type not in _OP_WITHOUT_KERNEL_SET:
            op_desc.infer_var_type(main_block_desc)
            op_desc.infer_shape(main_block_desc)
        op_desc.check_attrs()
367 368

    for index, name in enumerate(program_config.outputs):
369
        var_desc = main_block_desc.var(b"fetch")
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        var_desc.set_type(core.VarDesc.VarType.FETCH_LIST)
        var_desc.set_need_check_feed(True)
        op_desc = main_block_desc.append_op()
        op_desc.set_type("fetch")
        op_desc.set_input('X', [name])
        op_desc.set_output('Out', ["fetch"])
        op_desc._set_attr("col", index)

    main_program_desc._set_version()
    paddle.fluid.core.save_op_version_info(main_program_desc)

    model = main_program_desc.serialize_to_string()

    util_program._sync_with_cpp()
    place = fluid.CPUPlace()
    executor = fluid.Executor(place)
    scope = fluid.Scope()
    with fluid.scope_guard(scope):
        executor.run(util_program)
        params = scope.find_var("out_var_0").get_bytes()
390

391
    return model, params
392 393


394 395 396 397 398 399 400
def create_quant_model(
    model,
    params,
    activation_quantize_type='moving_average_abs_max',
    weight_quantize_type='channel_wise_abs_max',
    save=False,
):
401 402 403
    place = paddle.CUDAPlace(0)
    scope = global_scope()
    exe = paddle.static.Executor(place)
404 405 406 407 408 409 410 411 412 413
    [
        inference_program,
        feed_target_names,
        fetch_targets,
    ] = paddle.static.load_inference_model(
        path_prefix=None,
        executor=exe,
        model_filename=model,
        params_filename=params,
    )
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    graph = IrGraph(core.Graph(inference_program.desc), for_test=True)

    out_scale_op_list = [
        "conv2d",
        "depthwise_conv2d",
        "mul",
        "matmul",
        "relu",
        "leaky_relu",
        "relu6",
        "sigmoid",
        "tanh",
        "prelu",
        "swish",
        "softmax",
        "batch_norm",
        "layer_norm",
        "elementwise_add",
        "pool2d",
        "reshape2",
        "transpose2",
        "concat",
        "elementwise_mul",
        "scale",
        "slice",
        "hard_swish",
        "hard_sigmoid",
        "conv2d_transpose",
        "gru",
        "bilinear_interp",
        "nearest_interp",
        "trilinear_interp",
        "flatten",
        "flatten2",
        "transpose",
        "pad2d",
        "reshape",
        "layer_norm",
    ]
    op_real_in_out_name = {
        "conv2d": [["Input", "Filter"], ["Output"]],
        "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
        "conv2d_transpose": [["Input", "Filter"], ["Output"]],
        "mul": [["X", "Y"], ["Out"]],
        "matmul": [["X", "Y"], ["Out"]],
        "pool2d": [["X"], ["Out"]],
        "elementwise_add": [["X", "Y"], ["Out"]],
        "concat": [["X"], ["Out"]],
        "softmax": [["X"], ["Out"]],
        "argmax": [["X"], ["Out"]],
        "transpose": [["X"], ["Out"]],
        "equal": [["X", "Y"], ["Out"]],
        "gather": [["X"], ["Out"]],
        "greater_equal": [["X", "Y"], ["Out"]],
        "greater_than": [["X", "Y"], ["Out"]],
        "less_equal": [["X", "Y"], ["Out"]],
        "less_than": [["X", "Y"], ["Out"]],
        "mean": [["X"], ["Out"]],
        "not_equal": [["X", "Y"], ["Out"]],
        "reshape": [["X"], ["Out"]],
        "reshape2": [["X"], ["Out"]],
        "transpose2": [["X"], ["Out"]],
        "bilinear_interp": [["X"], ["Out"]],
        "nearest_interp": [["X"], ["Out"]],
        "trilinear_interp": [["X"], ["Out"]],
        "slice": [["Input"], ["Out"]],
        "squeeze": [["X"], ["Out"]],
        "elementwise_sub": [["X", "Y"], ["Out"]],
        "relu": [["X"], ["Out"]],
        "relu6": [["X"], ["Out"]],
        "leaky_relu": [["X"], ["Out"]],
        "prelu": [["X"], ["Out"]],
        "tanh": [["X"], ["Out"]],
        "swish": [["X"], ["Out"]],
        "dropout": [["X"], ["Out"]],
        "batch_norm": [["X"], ["Y"]],
        "layer_norm": [["X"], ["Y"]],
        "sigmoid": [["X"], ["Out"]],
        "elementwise_mul": [["X", "Y"], ["Out"]],
        "scale": [["X"], ["Out"]],
        "hard_swish": [["X"], ["Out"]],
        "hard_sigmoid": [["X"], ["Out"]],
        "gru": [["Input", "Weight"], ["Hidden"]],
        "lstm": [["Input", "Weight"], ["Hidden"]],
        "pad2d": [["X"], ["Out"]],
        "flatten": [["X"], ["Out"]],
        "flatten2": [["X"], ["Out"]],
    }

    def _get_op_output_var_names(op):
        """ """
505 506 507
        assert isinstance(
            op, (IrNode, Operator)
        ), "The input op should be IrNode or Operator."
508
        var_names = []
509
        op_name = op.name() if isinstance(op, IrNode) else op.type
510 511 512 513 514 515 516 517 518 519 520 521
        if op_name not in op_real_in_out_name:
            return []

        name_list = op_real_in_out_name[op_name][1]
        for name in name_list:
            var_name = op.output(name)
            if isinstance(var_name, list):
                var_names.extend(var_name)
            else:
                var_names.append(var_name)
        return var_names

W
Wilber 已提交
522 523 524 525
    transform_pass = QuantizationTransformPass(
        scope=scope,
        place=place,
        activation_quantize_type=activation_quantize_type,
526 527
        weight_quantize_type=weight_quantize_type,
    )
W
Wilber 已提交
528 529
    transform_pass.apply(graph)

530 531 532 533 534 535
    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() in out_scale_op_list:
            var_names = _get_op_output_var_names(op_node)
            for var_name in var_names:
                in_node = graph._find_node_by_name(op_node.outputs, var_name)
536 537 538 539
                if in_node.dtype() not in [
                    core.VarDesc.VarType.FP64,
                    core.VarDesc.VarType.FP32,
                ]:
540 541 542 543 544 545
                    continue

                op_node.op()._set_attr("out_threshold", 3.0)

    # Freeze graph for inference, but the weight of fc/conv is still float type.
    freeze_pass = QuantizationFreezePass(
546 547
        scope=scope, place=place, weight_quantize_type=weight_quantize_type
    )
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    freeze_pass.apply(graph)

    main_program = graph.to_program()

    # modify fake_quantize_moving_average_abs_max(InScale) and fake_channel_wise_dequantize_max_abs(Scales)
    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() == 'fake_quantize_moving_average_abs_max':
            var_name = op_node.input("InScale")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.array([1], dtype=np.float32), place)
        elif op_node.name() == 'fake_channel_wise_dequantize_max_abs':
            var_name = op_node.input("Scales")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.ones(tensor.shape(), dtype=np.float32), place)

    if save:
565 566 567 568 569 570 571
        fluid.io.save_inference_model(
            'test_inference_model',
            feed_target_names,
            fetch_targets,
            exe,
            main_program=main_program,
        )
572 573 574 575

    feed_vars = [
        main_program.global_block().var(name) for name in feed_target_names
    ]
576 577 578
    serialized_program = paddle.static.serialize_program(
        feed_vars, fetch_targets, program=main_program
    )
579
    serialized_params = paddle.static.serialize_persistables(
580 581
        feed_vars, fetch_targets, executor=exe, program=main_program
    )
582
    return serialized_program, serialized_params