program_config.py 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import enum
16
from typing import Any, Callable, Dict, List, Optional
17

18
import numpy as np
19

20 21 22
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
23 24 25 26
from paddle.fluid.contrib.slim.quantization import (
    QuantizationFreezePass,
    QuantizationTransformPass,
)
27
from paddle.fluid.executor import global_scope
28 29 30 31 32 33 34
from paddle.fluid.framework import (
    IrGraph,
    IrNode,
    Operator,
    convert_np_dtype_to_dtype_,
)
from paddle.fluid.initializer import NumpyArrayInitializer
35

36 37 38 39 40 41

class TensorConfig:
    '''
    A config builder for a input or a weight.
    '''

42 43 44 45 46 47
    def __init__(
        self,
        lod: Optional[List[List[int]]] = None,
        data_gen: Optional[Callable[..., np.array]] = None,
        shape: Optional[List[List[int]]] = None,
    ):
48 49 50
        '''
        shape: The shape of the tensor.
        dtype: The data type of the tensor.
51
        data: The value of WeightVar. for input, it should be None
52
        '''
W
Wilber 已提交
53
        self.lod = lod
J
Jason 已提交
54 55 56 57 58 59
        if data_gen is not None:
            self.data_gen = data_gen
            self.data = data_gen()
            self.dtype = data_gen().dtype
            self.shape = data_gen().shape
        else:
60 61 62
            assert (
                shape is not None
            ), "While data_gen is not defined, shape must not be None"
J
Jason 已提交
63 64 65
            self.data = np.random.normal(0.0, 1.0, shape).astype(np.float32)
            self.shape = shape
            self.dtype = self.data.dtype
66 67 68

    def __repr__(self):
        return str({'shape': self.shape, 'lod': self.lod, 'dtype': self.dtype})
69 70


W
Wilber 已提交
71 72 73 74 75 76
class VarType(enum.Enum):
    LOD_TENSOR = 1
    LOD_TENSOR_ARRAY = 2
    STEP_SCOPES = 3


77
class OpConfig:
78 79 80 81 82 83 84 85 86 87 88 89
    '''A config builder for generating a Op.'''

    def __init__(
        self,
        type: str,
        inputs: Dict[str, List[str]],
        outputs: Dict[str, List[str]],
        attrs: Dict[str, Any] = None,
        outputs_var_type: Dict[str, VarType] = None,
        outputs_dtype: Dict[str, np.dtype] = None,
        **kwargs,
    ):
90 91 92
        self.type = type
        self.inputs = inputs
        self.outputs = outputs
W
Wilber 已提交
93 94
        self.outputs_dtype = outputs_dtype
        self.outputs_var_type = outputs_var_type
95
        self.attrs = attrs
J
Jason 已提交
96 97 98
        if self.attrs is None:
            self.attrs = dict()
        self.attrs.update(kwargs)
99

100 101 102 103 104
    def __repr__(self):
        log_str = self.type
        log_str += str(self.attrs)
        return log_str

105

W
Wilber 已提交
106
_OP_WITHOUT_KERNEL_SET = {
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    'feed',
    'fetch',
    'recurrent',
    'go',
    'rnn_memory_helper_grad',
    'conditional_block',
    'while',
    'send',
    'recv',
    'listen_and_serv',
    'fl_listen_and_serv',
    'ncclInit',
    'select',
    'checkpoint_notify',
    'gen_bkcl_id',
    'c_gen_bkcl_id',
    'gen_nccl_id',
    'c_gen_nccl_id',
    'c_comm_init',
    'c_sync_calc_stream',
    'c_sync_comm_stream',
    'queue_generator',
    'dequeue',
    'enqueue',
    'heter_listen_and_serv',
    'c_wait_comm',
    'c_wait_compute',
    'c_gen_hccl_id',
    'c_comm_init_hccl',
    'copy_cross_scope',
W
Wilber 已提交
137 138 139 140
}


class BlockConfig:
141 142 143 144 145 146 147 148 149 150
    '''A config builder for generating a Block.'''

    def __init__(
        self,
        ops: List[OpConfig],
        vars: List[str],
        vars_dtype: Dict[str, np.dtype] = None,
        vars_var_type: Dict[str, VarType] = None,
        vars_lod_level: Dict[str, int] = None,
    ):
W
Wilber 已提交
151 152 153 154 155 156 157 158
        self.ops = ops
        self.vars = vars
        self.vars_dtype = vars_dtype
        self.vars_var_type = vars_var_type
        self.vars_lod_level = vars_lod_level

    def fill_block_desc(self, block_desc):
        for name in self.vars:
159
            var_desc = block_desc.var(name.encode())
W
Wilber 已提交
160
            var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
161 162 163
            if (
                self.vars_lod_level is not None
                and name in self.vars_lod_level.keys()
W
Wilber 已提交
164 165
            ):
                var_desc.set_lod_level(self.vars_lod_level[name])
166 167 168
            if (
                self.vars_var_type is not None
                and name in self.vars_var_type.keys()
W
Wilber 已提交
169 170 171 172 173 174 175 176 177
            ):
                if self.vars_var_type[name] == VarType.LOD_TENSOR_ARRAY:
                    var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR_ARRAY)
                elif self.vars_var_type[name] == VarType.STEP_SCOPES:
                    var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                    continue
            var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
            if self.vars_dtype is not None and name in self.vars_dtype.keys():
                var_desc.set_dtype(
178 179
                    convert_np_dtype_to_dtype_(self.vars_dtype[name])
                )
W
Wilber 已提交
180 181 182 183 184 185 186 187 188 189 190

        for op_config in self.ops:
            op_desc = block_desc.append_op()
            op_desc.set_type(op_config.type)
            for name, values in op_config.inputs.items():
                op_desc.set_input(name, values)
            for name, values in op_config.attrs.items():
                op_desc._set_attr(name, values)
            for name, values in op_config.outputs.items():
                op_desc.set_output(name, values)
                for v in values:
191
                    if block_desc.has_var_recursive(v.encode()):
W
Wilber 已提交
192
                        continue
193
                    var_desc = block_desc.var(v.encode())
W
Wilber 已提交
194
                    var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
195 196 197
                    if (
                        op_config.outputs_var_type is not None
                        and v in op_config.outputs_var_type.keys()
W
Wilber 已提交
198
                    ):
199 200 201 202
                        if (
                            op_config.outputs_var_type[v]
                            == VarType.LOD_TENSOR_ARRAY
                        ):
W
Wilber 已提交
203
                            var_desc.set_type(
204 205 206 207 208
                                core.VarDesc.VarType.LOD_TENSOR_ARRAY
                            )
                        elif (
                            op_config.outputs_var_type[v] == VarType.STEP_SCOPES
                        ):
W
Wilber 已提交
209 210 211
                            var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                            continue
                    var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
212 213 214
                    if (
                        op_config.outputs_dtype is not None
                        and v in op_config.outputs_dtype.keys()
W
Wilber 已提交
215 216
                    ):
                        var_desc.set_dtype(
217
                            convert_np_dtype_to_dtype_(
218 219 220
                                op_config.outputs_dtype[v]
                            )
                        )
W
Wilber 已提交
221 222 223 224 225 226
            if op_config.type not in _OP_WITHOUT_KERNEL_SET:
                op_desc.infer_var_type(block_desc)
                op_desc.infer_shape(block_desc)
            op_desc.check_attrs()


227
class ProgramConfig:
228 229 230 231 232 233 234 235 236
    '''A config builder for generating a Program.'''

    def __init__(
        self,
        ops: List[OpConfig],
        weights: Dict[str, TensorConfig],
        inputs: Dict[str, TensorConfig],
        outputs: List[str],
    ):
237
        self.ops = ops
W
Wilber 已提交
238 239 240 241 242 243 244 245 246 247 248
        # if no weight need to save, we create a place_holder to help seriazlie params.
        if not weights:

            def generate_weight():
                return np.array([1]).astype(np.float32)

            self.weights = {
                "place_holder_weight": TensorConfig(data_gen=generate_weight)
            }
        else:
            self.weights = weights
249 250 251
        self.inputs = inputs
        self.outputs = outputs

252 253 254 255 256 257 258 259 260 261
    def __repr__(self):
        log_str = ''
        for i in range(len(self.ops)):
            if i != len(self.ops) - 1:
                log_str += repr(self.ops[i]) + ' + '
            else:
                log_str += repr(self.ops[i])
        log_str += ' -- '
        for t, v in self.inputs.items():
            log_str += '[' + t + ': ' + str(v) + ']'
262 263
        for t, v in self.weights.items():
            log_str += '[' + t + ': ' + str(v) + ']'
264 265 266

        return log_str

267 268

def create_fake_model(program_config):
269
    '''Create a Paddle model(in memory) according to the given config.'''
270 271 272 273 274
    paddle.enable_static()
    main_program_desc = core.ProgramDesc()
    util_program = fluid.Program()
    main_block_desc = main_program_desc.block(0)

275
    var_desc = main_block_desc.var(b"feed")
276 277 278 279 280
    var_desc.set_type(core.VarDesc.VarType.FEED_MINIBATCH)
    var_desc.set_persistable(True)

    index = 0
    for name, tensor_config in program_config.inputs.items():
281
        var_desc = main_block_desc.var(name.encode())
282 283 284
        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
        var_desc.set_dtype(convert_np_dtype_to_dtype_(tensor_config.dtype))
        var_desc.set_shape(tensor_config.shape)
285
        print(f"name: {name}; shape: {tensor_config.shape}")
286
        var_desc.set_need_check_feed(True)
W
Wilber 已提交
287 288
        if tensor_config.lod is not None:
            var_desc.set_lod_level(len(tensor_config.lod))
289 290 291 292 293 294 295 296 297
        op_desc = main_block_desc._prepend_op()
        op_desc.set_type("feed")
        op_desc.set_input('X', ["feed"])
        op_desc.set_output('Out', [name])
        op_desc._set_attr("col", index)
        index = index + 1

    save_var_map = {}
    for name, tensor_config in program_config.weights.items():
298
        var_desc = main_block_desc.var(name.encode())
299 300 301 302 303 304 305 306 307 308
        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
        var_desc.set_dtype(convert_np_dtype_to_dtype_(tensor_config.dtype))
        var_desc.set_shape(tensor_config.shape)
        var_desc.set_persistable(True)

        save_var_map[name] = util_program.global_block().create_parameter(
            dtype=tensor_config.dtype,
            shape=tensor_config.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            name=name,
309 310
            initializer=NumpyArrayInitializer(tensor_config.data),
        )
311 312 313 314 315
    in_vars = []
    for name in sorted(save_var_map.keys()):
        in_vars.append(save_var_map[name])

    out_var = util_program.global_block().create_var(
316 317
        type=core.VarDesc.VarType.RAW, name="out_var_0"
    )
318
    out_var.desc.set_persistable(True)
319 320 321 322 323 324
    util_program.global_block().append_op(
        type='save_combine',
        inputs={'X': in_vars},
        outputs={'Y': out_var},
        attrs={'file_path': '', 'save_to_memory': True},
    )
325 326 327 328 329 330
    for op_config in program_config.ops:
        op_desc = main_block_desc.append_op()
        op_desc.set_type(op_config.type)
        for name, values in op_config.inputs.items():
            op_desc.set_input(name, values)
        for name, values in op_config.attrs.items():
W
Wilber 已提交
331 332 333 334 335 336
            if name == 'sub_block':
                sub_block_desc = main_program_desc.append_block(main_block_desc)
                values.fill_block_desc(sub_block_desc)
                op_desc._set_attr(name, sub_block_desc)
            else:
                op_desc._set_attr(name, values)
337 338
        for name, values in op_config.outputs.items():
            op_desc.set_output(name, values)
339
            for v in values:
340
                if main_block_desc.has_var_recursive(v.encode()):
W
Wilber 已提交
341
                    continue
342
                var_desc = main_block_desc.var(v.encode())
343
                var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
344 345 346
                if (
                    op_config.outputs_var_type is not None
                    and v in op_config.outputs_var_type.keys()
W
Wilber 已提交
347
                ):
348 349 350 351
                    if (
                        op_config.outputs_var_type[v]
                        == VarType.LOD_TENSOR_ARRAY
                    ):
W
Wilber 已提交
352 353 354 355 356
                        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR_ARRAY)
                    elif op_config.outputs_var_type[v] == VarType.STEP_SCOPES:
                        var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                        continue
                var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
357 358 359
                if (
                    op_config.outputs_dtype is not None
                    and v in op_config.outputs_dtype.keys()
W
Wilber 已提交
360 361
                ):
                    var_desc.set_dtype(
362 363
                        convert_np_dtype_to_dtype_(op_config.outputs_dtype[v])
                    )
W
Wilber 已提交
364 365 366 367
        if op_config.type not in _OP_WITHOUT_KERNEL_SET:
            op_desc.infer_var_type(main_block_desc)
            op_desc.infer_shape(main_block_desc)
        op_desc.check_attrs()
368 369

    for index, name in enumerate(program_config.outputs):
370
        var_desc = main_block_desc.var(b"fetch")
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        var_desc.set_type(core.VarDesc.VarType.FETCH_LIST)
        var_desc.set_need_check_feed(True)
        op_desc = main_block_desc.append_op()
        op_desc.set_type("fetch")
        op_desc.set_input('X', [name])
        op_desc.set_output('Out', ["fetch"])
        op_desc._set_attr("col", index)

    main_program_desc._set_version()
    paddle.fluid.core.save_op_version_info(main_program_desc)

    model = main_program_desc.serialize_to_string()

    util_program._sync_with_cpp()
    place = fluid.CPUPlace()
    executor = fluid.Executor(place)
    scope = fluid.Scope()
    with fluid.scope_guard(scope):
        executor.run(util_program)
        params = scope.find_var("out_var_0").get_bytes()
391

392
    return model, params
393 394


395 396 397 398 399 400 401
def create_quant_model(
    model,
    params,
    activation_quantize_type='moving_average_abs_max',
    weight_quantize_type='channel_wise_abs_max',
    save=False,
):
402 403 404
    place = paddle.CUDAPlace(0)
    scope = global_scope()
    exe = paddle.static.Executor(place)
405 406 407 408 409 410 411 412 413 414
    [
        inference_program,
        feed_target_names,
        fetch_targets,
    ] = paddle.static.load_inference_model(
        path_prefix=None,
        executor=exe,
        model_filename=model,
        params_filename=params,
    )
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    graph = IrGraph(core.Graph(inference_program.desc), for_test=True)

    out_scale_op_list = [
        "conv2d",
        "depthwise_conv2d",
        "mul",
        "matmul",
        "relu",
        "leaky_relu",
        "relu6",
        "sigmoid",
        "tanh",
        "prelu",
        "swish",
        "softmax",
        "batch_norm",
        "layer_norm",
        "elementwise_add",
        "pool2d",
        "reshape2",
        "transpose2",
        "concat",
        "elementwise_mul",
        "scale",
        "slice",
        "hard_swish",
        "hard_sigmoid",
        "conv2d_transpose",
        "gru",
        "bilinear_interp",
        "nearest_interp",
        "trilinear_interp",
        "flatten",
        "flatten2",
        "transpose",
        "pad2d",
        "reshape",
        "layer_norm",
    ]
    op_real_in_out_name = {
        "conv2d": [["Input", "Filter"], ["Output"]],
        "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
        "conv2d_transpose": [["Input", "Filter"], ["Output"]],
        "mul": [["X", "Y"], ["Out"]],
        "matmul": [["X", "Y"], ["Out"]],
        "pool2d": [["X"], ["Out"]],
        "elementwise_add": [["X", "Y"], ["Out"]],
        "concat": [["X"], ["Out"]],
        "softmax": [["X"], ["Out"]],
        "argmax": [["X"], ["Out"]],
        "transpose": [["X"], ["Out"]],
        "equal": [["X", "Y"], ["Out"]],
        "gather": [["X"], ["Out"]],
        "greater_equal": [["X", "Y"], ["Out"]],
        "greater_than": [["X", "Y"], ["Out"]],
        "less_equal": [["X", "Y"], ["Out"]],
        "less_than": [["X", "Y"], ["Out"]],
        "mean": [["X"], ["Out"]],
        "not_equal": [["X", "Y"], ["Out"]],
        "reshape": [["X"], ["Out"]],
        "reshape2": [["X"], ["Out"]],
        "transpose2": [["X"], ["Out"]],
        "bilinear_interp": [["X"], ["Out"]],
        "nearest_interp": [["X"], ["Out"]],
        "trilinear_interp": [["X"], ["Out"]],
        "slice": [["Input"], ["Out"]],
        "squeeze": [["X"], ["Out"]],
        "elementwise_sub": [["X", "Y"], ["Out"]],
        "relu": [["X"], ["Out"]],
        "relu6": [["X"], ["Out"]],
        "leaky_relu": [["X"], ["Out"]],
        "prelu": [["X"], ["Out"]],
        "tanh": [["X"], ["Out"]],
        "swish": [["X"], ["Out"]],
        "dropout": [["X"], ["Out"]],
        "batch_norm": [["X"], ["Y"]],
        "layer_norm": [["X"], ["Y"]],
        "sigmoid": [["X"], ["Out"]],
        "elementwise_mul": [["X", "Y"], ["Out"]],
        "scale": [["X"], ["Out"]],
        "hard_swish": [["X"], ["Out"]],
        "hard_sigmoid": [["X"], ["Out"]],
        "gru": [["Input", "Weight"], ["Hidden"]],
        "lstm": [["Input", "Weight"], ["Hidden"]],
        "pad2d": [["X"], ["Out"]],
        "flatten": [["X"], ["Out"]],
        "flatten2": [["X"], ["Out"]],
    }

    def _get_op_output_var_names(op):
        """ """
506 507 508
        assert isinstance(
            op, (IrNode, Operator)
        ), "The input op should be IrNode or Operator."
509
        var_names = []
510
        op_name = op.name() if isinstance(op, IrNode) else op.type
511 512 513 514 515 516 517 518 519 520 521 522
        if op_name not in op_real_in_out_name:
            return []

        name_list = op_real_in_out_name[op_name][1]
        for name in name_list:
            var_name = op.output(name)
            if isinstance(var_name, list):
                var_names.extend(var_name)
            else:
                var_names.append(var_name)
        return var_names

W
Wilber 已提交
523 524 525 526
    transform_pass = QuantizationTransformPass(
        scope=scope,
        place=place,
        activation_quantize_type=activation_quantize_type,
527 528
        weight_quantize_type=weight_quantize_type,
    )
W
Wilber 已提交
529 530
    transform_pass.apply(graph)

531 532 533 534 535 536
    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() in out_scale_op_list:
            var_names = _get_op_output_var_names(op_node)
            for var_name in var_names:
                in_node = graph._find_node_by_name(op_node.outputs, var_name)
537 538 539 540
                if in_node.dtype() not in [
                    core.VarDesc.VarType.FP64,
                    core.VarDesc.VarType.FP32,
                ]:
541 542 543 544 545 546
                    continue

                op_node.op()._set_attr("out_threshold", 3.0)

    # Freeze graph for inference, but the weight of fc/conv is still float type.
    freeze_pass = QuantizationFreezePass(
547 548
        scope=scope, place=place, weight_quantize_type=weight_quantize_type
    )
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    freeze_pass.apply(graph)

    main_program = graph.to_program()

    # modify fake_quantize_moving_average_abs_max(InScale) and fake_channel_wise_dequantize_max_abs(Scales)
    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() == 'fake_quantize_moving_average_abs_max':
            var_name = op_node.input("InScale")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.array([1], dtype=np.float32), place)
        elif op_node.name() == 'fake_channel_wise_dequantize_max_abs':
            var_name = op_node.input("Scales")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.ones(tensor.shape(), dtype=np.float32), place)

    if save:
566 567 568 569 570 571 572
        fluid.io.save_inference_model(
            'test_inference_model',
            feed_target_names,
            fetch_targets,
            exe,
            main_program=main_program,
        )
573 574 575 576

    feed_vars = [
        main_program.global_block().var(name) for name in feed_target_names
    ]
577 578 579
    serialized_program = paddle.static.serialize_program(
        feed_vars, fetch_targets, program=main_program
    )
580
    serialized_params = paddle.static.serialize_persistables(
581 582
        feed_vars, fetch_targets, executor=exe, program=main_program
    )
583
    return serialized_program, serialized_params