test_pixel_shuffle_op.py 11.7 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
R
ruri 已提交
16

17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16
19

R
ruri 已提交
20
import paddle
21
import paddle.nn.functional as F
22 23
from paddle import fluid
from paddle.fluid import core
R
ruri 已提交
24 25


R
ruri 已提交
26 27 28
def pixel_shuffle_np(x, up_factor, data_format="NCHW"):
    if data_format == "NCHW":
        n, c, h, w = x.shape
29 30 31 32 33 34 35 36
        new_shape = (
            n,
            c // (up_factor * up_factor),
            up_factor,
            up_factor,
            h,
            w,
        )
R
ruri 已提交
37 38 39 40 41 42
        # reshape to (num,output_channel,upscale_factor,upscale_factor,h,w)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,output_channel,h,upscale_factor,w,upscale_factor)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, c // (up_factor * up_factor), h * up_factor, w * up_factor]
        npresult = np.reshape(npresult, oshape)
R
ruri 已提交
43 44 45
        return npresult
    else:
        n, h, w, c = x.shape
46 47 48 49 50 51 52 53
        new_shape = (
            n,
            h,
            w,
            c // (up_factor * up_factor),
            up_factor,
            up_factor,
        )
R
ruri 已提交
54 55 56 57 58 59 60 61 62 63 64 65
        # reshape to (num,h,w,output_channel,upscale_factor,upscale_factor)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,h,upscale_factor,w,upscale_factor,output_channel)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, h * up_factor, w * up_factor, c // (up_factor * up_factor)]
        npresult = np.reshape(npresult, oshape)
        return npresult


class TestPixelShuffleOp(OpTest):
    def setUp(self):
        self.op_type = "pixel_shuffle"
H
hong 已提交
66
        self.python_api = paddle.nn.functional.pixel_shuffle
67
        self.init_dtype()
R
ruri 已提交
68 69 70 71 72 73 74 75 76 77
        self.init_data_format()
        n, c, h, w = 2, 9, 4, 4

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        up_factor = 3

78
        x = np.random.random(shape).astype(self.dtype)
R
ruri 已提交
79
        npresult = pixel_shuffle_np(x, up_factor, self.format)
R
ruri 已提交
80 81 82

        self.inputs = {'X': x}
        self.outputs = {'Out': npresult}
R
ruri 已提交
83 84
        self.attrs = {'upscale_factor': up_factor, "data_format": self.format}

85 86 87
    def init_dtype(self):
        self.dtype = np.float64

R
ruri 已提交
88 89
    def init_data_format(self):
        self.format = "NCHW"
R
ruri 已提交
90 91

    def test_check_output(self):
92
        self.check_output()
R
ruri 已提交
93 94

    def test_check_grad(self):
95 96 97 98
        self.check_grad(
            ['X'],
            'Out',
        )
R
ruri 已提交
99 100


R
ruri 已提交
101 102 103 104 105
class TestChannelLast(TestPixelShuffleOp):
    def init_data_format(self):
        self.format = "NHWC"


106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
class TestPixelShuffleFP16Op(TestPixelShuffleOp):
    def init_dtype(self):
        self.dtype = np.float16


@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support bfloat16",
)
class TestPixelShuffleBF16Op(OpTest):
    def setUp(self):
        self.op_type = "pixel_shuffle"
        self.python_api = paddle.nn.functional.pixel_shuffle
        self.init_dtype()
        self.init_data_format()
        n, c, h, w = 2, 9, 4, 4

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        up_factor = 3

        x = np.random.random(shape).astype(self.np_dtype)
        npresult = pixel_shuffle_np(x, up_factor, self.format)

        self.inputs = {'X': x}
        self.outputs = {'Out': npresult}
        self.attrs = {'upscale_factor': up_factor, "data_format": self.format}

        self.place = core.CUDAPlace(0)
        self.inputs['X'] = convert_float_to_uint16(self.inputs['X'])
        self.outputs['Out'] = convert_float_to_uint16(self.outputs['Out'])

    def init_dtype(self):
        self.dtype = np.uint16
        self.np_dtype = np.float32

    def init_data_format(self):
        self.format = "NCHW"

    def test_check_output(self):
        self.check_output_with_place(self.place)

    def test_check_grad(self):
        self.check_grad_with_place(
            self.place,
            ['X'],
            'Out',
        )


R
ruri 已提交
160 161 162 163 164 165 166 167
class TestPixelShuffleAPI(unittest.TestCase):
    def setUp(self):
        self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float64")
        self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float64")
        self.out_1_np = pixel_shuffle_np(self.x_1_np, 3)
        self.out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

    def test_static_graph_functional(self):
168 169 170
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
171 172 173
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
174
            x_1 = paddle.static.data(
175 176
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
177
            x_2 = paddle.static.data(
178 179
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
R
ruri 已提交
180 181 182 183
            out_1 = F.pixel_shuffle(x_1, 3)
            out_2 = F.pixel_shuffle(x_2, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
184 185 186 187 188 189 190 191 192 193 194 195 196
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
R
ruri 已提交
197 198 199 200

            assert np.allclose(res_1, self.out_1_np)
            assert np.allclose(res_2, self.out_2_np)

B
Bjmw3 已提交
201 202 203 204 205 206 207 208 209
    def test_api_fp16(self):
        paddle.enable_static()
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            if core.is_compiled_with_cuda():
                place = paddle.CUDAPlace(0)
                self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float16")
                self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float16")
210
                x_1 = paddle.static.data(
B
Bjmw3 已提交
211 212
                    name="x", shape=[2, 9, 4, 4], dtype="float16"
                )
213
                x_2 = paddle.static.data(
B
Bjmw3 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
                    name="x2", shape=[2, 4, 4, 9], dtype="float16"
                )
                # init instance
                ps_1 = paddle.nn.PixelShuffle(3)
                ps_2 = paddle.nn.PixelShuffle(3, "NHWC")
                out_1 = ps_1(x_1)
                out_2 = ps_2(x_2)
                out_1_np = pixel_shuffle_np(self.x_1_np, 3)
                out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")
                exe = paddle.static.Executor(place=place)
                res_1 = exe.run(
                    fluid.default_main_program(),
                    feed={"x": self.x_1_np},
                    fetch_list=out_1,
                    use_prune=True,
                )
                res_2 = exe.run(
                    fluid.default_main_program(),
                    feed={"x2": self.x_2_np},
                    fetch_list=out_2,
                    use_prune=True,
                )
                assert np.allclose(res_1, out_1_np)
                assert np.allclose(res_2, out_2_np)

R
ruri 已提交
239 240
    # same test between layer and functional in this op.
    def test_static_graph_layer(self):
241 242 243
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
244 245 246
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
247
            x_1 = paddle.static.data(
248 249
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
250
            x_2 = paddle.static.data(
251 252
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
R
ruri 已提交
253 254 255 256 257 258 259 260 261
            # init instance
            ps_1 = paddle.nn.PixelShuffle(3)
            ps_2 = paddle.nn.PixelShuffle(3, "NHWC")
            out_1 = ps_1(x_1)
            out_2 = ps_2(x_2)
            out_1_np = pixel_shuffle_np(self.x_1_np, 3)
            out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
262 263 264 265 266 267 268 269 270 271 272 273 274
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
R
ruri 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

            assert np.allclose(res_1, out_1_np)
            assert np.allclose(res_2, out_2_np)

    def run_dygraph(self, up_factor, data_format):

        n, c, h, w = 2, 9, 4, 4

        if data_format == "NCHW":
            shape = [n, c, h, w]
        if data_format == "NHWC":
            shape = [n, h, w, c]

        x = np.random.random(shape).astype("float64")

        npresult = pixel_shuffle_np(x, up_factor, data_format)

292 293 294
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
295 296 297 298
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.disable_static(place=place)

299 300 301
            pixel_shuffle = paddle.nn.PixelShuffle(
                up_factor, data_format=data_format
            )
R
ruri 已提交
302 303
            result = pixel_shuffle(paddle.to_tensor(x))

304
            np.testing.assert_allclose(result.numpy(), npresult, rtol=1e-05)
R
ruri 已提交
305

306 307 308 309 310 311
            result_functional = F.pixel_shuffle(
                paddle.to_tensor(x), 3, data_format
            )
            np.testing.assert_allclose(
                result_functional.numpy(), npresult, rtol=1e-05
            )
R
ruri 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

    def test_dygraph1(self):
        self.run_dygraph(3, "NCHW")

    def test_dygraph2(self):
        self.run_dygraph(3, "NHWC")


class TestPixelShuffleError(unittest.TestCase):
    def test_error_functional(self):
        def error_upscale_factor():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3.33)

        self.assertRaises(TypeError, error_upscale_factor)

329 330 331 332 333 334 335
        def error_0_upscale_factor():
            with paddle.fluid.dygraph.guard():
                x = paddle.uniform([1, 1, 1, 1], dtype='float64')
                pixel_shuffle = F.pixel_shuffle(x, 0)

        self.assertRaises(ValueError, error_0_upscale_factor)

R
ruri 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        def error_data_format():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3, "WOW")

        self.assertRaises(ValueError, error_data_format)

    def test_error_layer(self):
        def error_upscale_factor_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3.33)

        self.assertRaises(TypeError, error_upscale_factor_layer)

        def error_data_format_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3, "MEOW")

        self.assertRaises(ValueError, error_data_format_layer)


R
ruri 已提交
359
if __name__ == '__main__':
H
hong 已提交
360
    paddle.enable_static()
R
ruri 已提交
361
    unittest.main()