test_resnet_prim_cinn.py 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import unittest

import numpy as np

import paddle
21 22
from paddle import fluid
from paddle.fluid import core
23 24 25 26 27 28 29 30 31
from paddle.vision.models import resnet50

SEED = 2020
base_lr = 0.001
momentum_rate = 0.9
l2_decay = 1e-4
batch_size = 2
epoch_num = 1

32 33 34 35 36 37 38 39 40 41 42 43 44 45
# In V100, 16G, CUDA 11.2, the results are as follows:
# DY2ST_PRIM_CINN_GT = [
#     5.8473358154296875,
#     8.322463989257812,
#     5.169863700866699,
#     8.399882316589355,
#     7.859550476074219,
#     7.4672698974609375,
#     9.828727722167969,
#     8.270355224609375,
#     8.456792831420898,
#     9.919631958007812,
# ]

L
LoneRanger 已提交
46
# note: Version 2.0 momentum is fused to OP when L2Decay is available, and the results are different from the fluid version.
47 48
# The results in ci as as follows:
DY2ST_PRIM_CINN_GT = [
49 50 51 52 53 54 55 56 57 58
    5.847333908081055,
    8.342670440673828,
    5.130363941192627,
    8.511886596679688,
    8.13458251953125,
    7.35969352722168,
    9.874241828918457,
    8.126291275024414,
    8.637175559997559,
    10.385666847229004,
59
]
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74
if core.is_compiled_with_cuda():
    paddle.set_flags({'FLAGS_cudnn_deterministic': True})


def reader_decorator(reader):
    def __reader__():
        for item in reader():
            img = np.array(item[0]).astype('float32').reshape(3, 224, 224)
            label = np.array(item[1]).astype('int64').reshape(1)
            yield img, label

    return __reader__


J
JYChen 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
class TransedFlowerDataSet(paddle.io.Dataset):
    def __init__(self, flower_data, length):
        self.img = []
        self.label = []
        self.flower_data = flower_data()
        self._generate(length)

    def _generate(self, length):
        for i, data in enumerate(self.flower_data):
            if i >= length:
                break
            self.img.append(data[0])
            self.label.append(data[1])

    def __getitem__(self, idx):
        return self.img[idx], self.label[idx]

    def __len__(self):
        return len(self.img)


96
def optimizer_setting(parameter_list=None):
L
LoneRanger 已提交
97
    optimizer = paddle.optimizer.Momentum(
98 99
        learning_rate=base_lr,
        momentum=momentum_rate,
L
LoneRanger 已提交
100 101
        weight_decay=paddle.regularizer.L2Decay(l2_decay),
        parameters=parameter_list,
102 103 104 105 106
    )

    return optimizer


W
WangZhen 已提交
107 108 109 110 111 112 113
def run(model, data_loader, optimizer, mode):
    if mode == 'train':
        model.train()
        end_step = 9
    elif mode == 'eval':
        model.eval()
        end_step = 1
114 115 116 117 118 119 120 121 122 123 124

    for epoch in range(epoch_num):
        total_acc1 = 0.0
        total_acc5 = 0.0
        total_sample = 0
        losses = []

        for batch_id, data in enumerate(data_loader()):
            start_time = time.time()
            img, label = data

W
WangZhen 已提交
125
            pred = model(img)
126 127 128 129 130 131 132 133 134 135 136
            avg_loss = paddle.nn.functional.cross_entropy(
                input=pred,
                label=label,
                soft_label=False,
                reduction='mean',
                use_softmax=True,
            )

            acc_top1 = paddle.static.accuracy(input=pred, label=label, k=1)
            acc_top5 = paddle.static.accuracy(input=pred, label=label, k=5)

W
WangZhen 已提交
137 138 139 140
            if mode == 'train':
                avg_loss.backward()
                optimizer.minimize(avg_loss)
                model.clear_gradients()
141 142 143 144

            total_acc1 += acc_top1
            total_acc5 += acc_top5
            total_sample += 1
145
            losses.append(avg_loss.numpy().item())
146 147 148

            end_time = time.time()
            print(
W
WangZhen 已提交
149
                "[%s]epoch %d | batch step %d, loss %0.8f, acc1 %0.3f, acc5 %0.3f, time %f"
150
                % (
W
WangZhen 已提交
151
                    mode,
152 153 154 155 156 157 158 159
                    epoch,
                    batch_id,
                    avg_loss,
                    total_acc1.numpy() / total_sample,
                    total_acc5.numpy() / total_sample,
                    end_time - start_time,
                )
            )
W
WangZhen 已提交
160
            if batch_id >= end_step:
161
                break
162
    print(losses)
163 164 165
    return losses


W
WangZhen 已提交
166 167 168 169 170 171 172 173 174 175
def train(to_static, enable_prim, enable_cinn):
    if core.is_compiled_with_cuda():
        paddle.set_device('gpu')
    else:
        paddle.set_device('cpu')
    np.random.seed(SEED)
    paddle.seed(SEED)
    paddle.framework.random._manual_program_seed(SEED)
    fluid.core._set_prim_all_enabled(enable_prim)

J
JYChen 已提交
176
    dataset = TransedFlowerDataSet(
W
WangZhen 已提交
177
        reader_decorator(paddle.dataset.flowers.train(use_xmap=False)),
J
JYChen 已提交
178 179 180 181
        batch_size * (10 + 1),
    )
    data_loader = paddle.io.DataLoader(
        dataset, batch_size=batch_size, drop_last=True
W
WangZhen 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    )

    resnet = resnet50(False)
    if to_static:
        build_strategy = paddle.static.BuildStrategy()
        if enable_cinn:
            build_strategy.build_cinn_pass = True
        resnet = paddle.jit.to_static(resnet, build_strategy=build_strategy)
    optimizer = optimizer_setting(parameter_list=resnet.parameters())

    train_losses = run(resnet, data_loader, optimizer, 'train')
    if to_static and enable_prim and enable_cinn:
        eval_losses = run(resnet, data_loader, optimizer, 'eval')
    return train_losses


198 199
class TestResnet(unittest.TestCase):
    @unittest.skipIf(
200 201
        not (paddle.is_compiled_with_cinn() and paddle.is_compiled_with_cuda()),
        "paddle is not compiled with CINN and CUDA",
202 203 204 205 206 207
    )
    def test_prim_cinn(self):
        dy2st_prim_cinn = train(
            to_static=True, enable_prim=True, enable_cinn=True
        )
        np.testing.assert_allclose(
208
            dy2st_prim_cinn, DY2ST_PRIM_CINN_GT, rtol=1e-5
209 210 211 212 213
        )


if __name__ == '__main__':
    unittest.main()