test_resnet_prim_cinn.py 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import unittest

import numpy as np

import paddle
21 22
from paddle import fluid
from paddle.fluid import core
23 24 25 26 27 28 29 30 31
from paddle.vision.models import resnet50

SEED = 2020
base_lr = 0.001
momentum_rate = 0.9
l2_decay = 1e-4
batch_size = 2
epoch_num = 1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
# In V100, 16G, CUDA 11.2, the results are as follows:
# DY2ST_PRIM_CINN_GT = [
#     5.8473358154296875,
#     8.322463989257812,
#     5.169863700866699,
#     8.399882316589355,
#     7.859550476074219,
#     7.4672698974609375,
#     9.828727722167969,
#     8.270355224609375,
#     8.456792831420898,
#     9.919631958007812,
# ]

# The results in ci as as follows:
DY2ST_PRIM_CINN_GT = [
48
    5.828786849975586,
C
cyber-pioneer 已提交
49 50 51 52 53 54 55 56 57
    8.332863807678223,
    5.0373005867004395,
    8.464998245239258,
    8.20099925994873,
    7.576723098754883,
    9.679173469543457,
    8.381753921508789,
    8.10612678527832,
    10.124727249145508,
58
]
59 60 61 62 63 64 65 66 67 68 69 70 71 72
if core.is_compiled_with_cuda():
    paddle.set_flags({'FLAGS_cudnn_deterministic': True})


def reader_decorator(reader):
    def __reader__():
        for item in reader():
            img = np.array(item[0]).astype('float32').reshape(3, 224, 224)
            label = np.array(item[1]).astype('int64').reshape(1)
            yield img, label

    return __reader__


J
JYChen 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
class TransedFlowerDataSet(paddle.io.Dataset):
    def __init__(self, flower_data, length):
        self.img = []
        self.label = []
        self.flower_data = flower_data()
        self._generate(length)

    def _generate(self, length):
        for i, data in enumerate(self.flower_data):
            if i >= length:
                break
            self.img.append(data[0])
            self.label.append(data[1])

    def __getitem__(self, idx):
        return self.img[idx], self.label[idx]

    def __len__(self):
        return len(self.img)


94 95 96 97
def optimizer_setting(parameter_list=None):
    optimizer = fluid.optimizer.Momentum(
        learning_rate=base_lr,
        momentum=momentum_rate,
98
        regularization=paddle.regularizer.L2Decay(l2_decay),
99 100 101 102 103 104
        parameter_list=parameter_list,
    )

    return optimizer


W
WangZhen 已提交
105 106 107 108 109 110 111
def run(model, data_loader, optimizer, mode):
    if mode == 'train':
        model.train()
        end_step = 9
    elif mode == 'eval':
        model.eval()
        end_step = 1
112 113 114 115 116 117 118 119 120 121 122

    for epoch in range(epoch_num):
        total_acc1 = 0.0
        total_acc5 = 0.0
        total_sample = 0
        losses = []

        for batch_id, data in enumerate(data_loader()):
            start_time = time.time()
            img, label = data

W
WangZhen 已提交
123
            pred = model(img)
124 125 126 127 128 129 130 131 132 133 134
            avg_loss = paddle.nn.functional.cross_entropy(
                input=pred,
                label=label,
                soft_label=False,
                reduction='mean',
                use_softmax=True,
            )

            acc_top1 = paddle.static.accuracy(input=pred, label=label, k=1)
            acc_top5 = paddle.static.accuracy(input=pred, label=label, k=5)

W
WangZhen 已提交
135 136 137 138
            if mode == 'train':
                avg_loss.backward()
                optimizer.minimize(avg_loss)
                model.clear_gradients()
139 140 141 142

            total_acc1 += acc_top1
            total_acc5 += acc_top5
            total_sample += 1
143
            losses.append(avg_loss.numpy().item())
144 145 146

            end_time = time.time()
            print(
W
WangZhen 已提交
147
                "[%s]epoch %d | batch step %d, loss %0.8f, acc1 %0.3f, acc5 %0.3f, time %f"
148
                % (
W
WangZhen 已提交
149
                    mode,
150 151 152 153 154 155 156 157
                    epoch,
                    batch_id,
                    avg_loss,
                    total_acc1.numpy() / total_sample,
                    total_acc5.numpy() / total_sample,
                    end_time - start_time,
                )
            )
W
WangZhen 已提交
158
            if batch_id >= end_step:
159
                break
160
    print(losses)
161 162 163
    return losses


W
WangZhen 已提交
164 165 166 167 168 169 170 171 172 173
def train(to_static, enable_prim, enable_cinn):
    if core.is_compiled_with_cuda():
        paddle.set_device('gpu')
    else:
        paddle.set_device('cpu')
    np.random.seed(SEED)
    paddle.seed(SEED)
    paddle.framework.random._manual_program_seed(SEED)
    fluid.core._set_prim_all_enabled(enable_prim)

J
JYChen 已提交
174
    dataset = TransedFlowerDataSet(
W
WangZhen 已提交
175
        reader_decorator(paddle.dataset.flowers.train(use_xmap=False)),
J
JYChen 已提交
176 177 178 179
        batch_size * (10 + 1),
    )
    data_loader = paddle.io.DataLoader(
        dataset, batch_size=batch_size, drop_last=True
W
WangZhen 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    )

    resnet = resnet50(False)
    if to_static:
        build_strategy = paddle.static.BuildStrategy()
        if enable_cinn:
            build_strategy.build_cinn_pass = True
        resnet = paddle.jit.to_static(resnet, build_strategy=build_strategy)
    optimizer = optimizer_setting(parameter_list=resnet.parameters())

    train_losses = run(resnet, data_loader, optimizer, 'train')
    if to_static and enable_prim and enable_cinn:
        eval_losses = run(resnet, data_loader, optimizer, 'eval')
    return train_losses


196 197
class TestResnet(unittest.TestCase):
    @unittest.skipIf(
198 199
        not (paddle.is_compiled_with_cinn() and paddle.is_compiled_with_cuda()),
        "paddle is not compiled with CINN and CUDA",
200 201 202 203 204 205
    )
    def test_prim_cinn(self):
        dy2st_prim_cinn = train(
            to_static=True, enable_prim=True, enable_cinn=True
        )
        np.testing.assert_allclose(
206
            dy2st_prim_cinn, DY2ST_PRIM_CINN_GT, rtol=1e-5
207 208 209 210 211
        )


if __name__ == '__main__':
    unittest.main()