test_simnet_v2.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import random
import unittest

19
import numpy as np
20 21
from simnet_dygraph_model_v2 import BOW, HingeLoss

22 23
import paddle

24 25 26 27 28 29 30 31 32 33 34 35 36 37
SEED = 102
random.seed(SEED)


def create_conf_dict():
    conf_dict = {}
    conf_dict["task_mode"] = "pairwise"
    conf_dict["net"] = {"emb_dim": 128, "bow_dim": 128, "hidden_dim": 128}
    conf_dict["loss"] = {"margin": 0.1}
    return conf_dict


def parse_args():
    parser = argparse.ArgumentParser()
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    parser.add_argument(
        "--batch_size",
        type=int,
        default=32,
        help="Total examples' number in batch for training.",
    )
    parser.add_argument(
        "--seq_len", type=int, default=32, help="The length of each sentence."
    )
    parser.add_argument(
        "--epoch", type=int, default=1, help="The number of training epoch."
    )
    parser.add_argument(
        "--fake_sample_size",
        type=int,
        default=128,
        help="The number of samples of fake data.",
    )
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    args = parser.parse_args([])
    return args


args = parse_args()


def fake_vocabulary():
    vocab = {}
    vocab["<unk>"] = 0
    for i in range(26):
        c = chr(ord('a') + i)
        vocab[c] = i + 1
    return vocab


vocab = fake_vocabulary()


J
JYChen 已提交
75 76
class FakeReaderProcessor(paddle.io.Dataset):
    def __init__(self, args, vocab, length):
77 78 79 80 81 82 83 84 85
        self.vocab = vocab
        self.seq_len = args.seq_len
        self.sample_size = args.fake_sample_size
        self.data_samples = []
        for i in range(self.sample_size):
            query = [random.randint(0, 26) for i in range(self.seq_len)]
            pos_title = query[:]
            neg_title = [26 - q for q in query]
            self.data_samples.append(
86 87
                np.array([query, pos_title, neg_title]).astype(np.int64)
            )
J
JYChen 已提交
88 89 90 91
        self.query = []
        self.pos_title = []
        self.neg_title = []
        self._init_data(length)
92 93 94 95 96 97 98 99 100

    def get_reader(self, mode, epoch=0):
        def reader_with_pairwise():
            if mode == "train":
                for i in range(self.sample_size):
                    yield self.data_samples[i]

        return reader_with_pairwise

J
JYChen 已提交
101 102 103 104 105 106 107 108
    def _init_data(self, length):
        reader = self.get_reader("train", epoch=args.epoch)()
        for i, yield_data in enumerate(reader):
            if i >= length:
                break
            self.query.append(yield_data[0])
            self.pos_title.append(yield_data[1])
            self.neg_title.append(yield_data[2])
109

J
JYChen 已提交
110 111 112 113 114 115 116 117 118 119
    def __getitem__(self, idx):
        return self.query[idx], self.pos_title[idx], self.neg_title[idx]

    def __len__(self):
        return len(self.query)


simnet_process = FakeReaderProcessor(
    args, vocab, args.batch_size * (args.epoch + 1)
)
120 121 122 123 124 125


def train(conf_dict, to_static):
    """
    train process
    """
R
Ryan 已提交
126
    paddle.jit.enable_to_static(to_static)
127 128 129 130 131 132 133 134

    # Get device
    if paddle.is_compiled_with_cuda():
        place = paddle.CUDAPlace(0)
    else:
        place = paddle.CPUPlace()

    paddle.disable_static(place)
C
cnn 已提交
135
    paddle.seed(SEED)
136 137 138 139 140 141 142
    paddle.framework.random._manual_program_seed(SEED)

    conf_dict['dict_size'] = len(vocab)
    conf_dict['seq_len'] = args.seq_len

    net = BOW(conf_dict)
    loss = HingeLoss(conf_dict)
143 144 145 146 147 148 149
    optimizer = paddle.optimizer.Adam(
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-08,
        parameters=net.parameters(),
    )
150 151 152 153 154 155

    metric = paddle.metric.Auc(name="auc")

    global_step = 0
    losses = []

J
JYChen 已提交
156 157
    train_loader = paddle.io.DataLoader(
        simnet_process, batch_size=args.batch_size
158
    )
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    for left, pos_right, neg_right in train_loader():
        left = paddle.reshape(left, shape=[-1, 1])
        pos_right = paddle.reshape(pos_right, shape=[-1, 1])
        neg_right = paddle.reshape(neg_right, shape=[-1, 1])
        net.train()
        global_step += 1
        left_feat, pos_score = net(left, pos_right)
        pred = pos_score
        _, neg_score = net(left, neg_right)
        avg_cost = loss.compute(pos_score, neg_score)
        losses.append(np.mean(avg_cost.numpy()))
        avg_cost.backward()
        optimizer.minimize(avg_cost)
        net.clear_gradients()
    paddle.enable_static()
    return losses


class TestSimnet(unittest.TestCase):
    def test_dygraph_static_same_loss(self):
        if paddle.is_compiled_with_cuda():
            paddle.fluid.set_flags({"FLAGS_cudnn_deterministic": True})
        conf_dict = create_conf_dict()
        dygraph_loss = train(conf_dict, to_static=False)
        static_loss = train(conf_dict, to_static=True)

        self.assertEqual(len(dygraph_loss), len(static_loss))
        for i in range(len(dygraph_loss)):
            self.assertAlmostEqual(dygraph_loss[i], static_loss[i])


if __name__ == '__main__':
    unittest.main()