test_simnet_v2.py 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import random
import unittest

19
import numpy as np
20 21
from simnet_dygraph_model_v2 import BOW, HingeLoss

22 23
import paddle

24 25 26 27 28 29 30 31 32 33 34 35 36 37
SEED = 102
random.seed(SEED)


def create_conf_dict():
    conf_dict = {}
    conf_dict["task_mode"] = "pairwise"
    conf_dict["net"] = {"emb_dim": 128, "bow_dim": 128, "hidden_dim": 128}
    conf_dict["loss"] = {"margin": 0.1}
    return conf_dict


def parse_args():
    parser = argparse.ArgumentParser()
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    parser.add_argument(
        "--batch_size",
        type=int,
        default=32,
        help="Total examples' number in batch for training.",
    )
    parser.add_argument(
        "--seq_len", type=int, default=32, help="The length of each sentence."
    )
    parser.add_argument(
        "--epoch", type=int, default=1, help="The number of training epoch."
    )
    parser.add_argument(
        "--fake_sample_size",
        type=int,
        default=128,
        help="The number of samples of fake data.",
    )
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    args = parser.parse_args([])
    return args


args = parse_args()


def fake_vocabulary():
    vocab = {}
    vocab["<unk>"] = 0
    for i in range(26):
        c = chr(ord('a') + i)
        vocab[c] = i + 1
    return vocab


vocab = fake_vocabulary()


75
class FakeReaderProcessor:
76 77 78 79 80 81 82 83 84 85
    def __init__(self, args, vocab):
        self.vocab = vocab
        self.seq_len = args.seq_len
        self.sample_size = args.fake_sample_size
        self.data_samples = []
        for i in range(self.sample_size):
            query = [random.randint(0, 26) for i in range(self.seq_len)]
            pos_title = query[:]
            neg_title = [26 - q for q in query]
            self.data_samples.append(
86 87
                np.array([query, pos_title, neg_title]).astype(np.int64)
            )
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

    def get_reader(self, mode, epoch=0):
        def reader_with_pairwise():
            if mode == "train":
                for i in range(self.sample_size):
                    yield self.data_samples[i]

        return reader_with_pairwise


simnet_process = FakeReaderProcessor(args, vocab)


def train(conf_dict, to_static):
    """
    train process
    """
R
Ryan 已提交
105
    paddle.jit.enable_to_static(to_static)
106 107 108 109 110 111 112 113

    # Get device
    if paddle.is_compiled_with_cuda():
        place = paddle.CUDAPlace(0)
    else:
        place = paddle.CPUPlace()

    paddle.disable_static(place)
C
cnn 已提交
114
    paddle.seed(SEED)
115 116 117 118 119 120 121
    paddle.framework.random._manual_program_seed(SEED)

    conf_dict['dict_size'] = len(vocab)
    conf_dict['seq_len'] = args.seq_len

    net = BOW(conf_dict)
    loss = HingeLoss(conf_dict)
122 123 124 125 126 127 128
    optimizer = paddle.optimizer.Adam(
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-08,
        parameters=net.parameters(),
    )
129 130 131 132 133 134

    metric = paddle.metric.Auc(name="auc")

    global_step = 0
    losses = []

135
    train_loader = paddle.fluid.io.DataLoader.from_generator(
136 137
        capacity=16, return_list=True, iterable=True, use_double_buffer=True
    )
138 139
    get_train_examples = simnet_process.get_reader("train", epoch=args.epoch)
    train_loader.set_sample_list_generator(
140 141
        paddle.batch(get_train_examples, batch_size=args.batch_size), place
    )
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

    for left, pos_right, neg_right in train_loader():
        left = paddle.reshape(left, shape=[-1, 1])
        pos_right = paddle.reshape(pos_right, shape=[-1, 1])
        neg_right = paddle.reshape(neg_right, shape=[-1, 1])
        net.train()
        global_step += 1
        left_feat, pos_score = net(left, pos_right)
        pred = pos_score
        _, neg_score = net(left, neg_right)
        avg_cost = loss.compute(pos_score, neg_score)
        losses.append(np.mean(avg_cost.numpy()))
        avg_cost.backward()
        optimizer.minimize(avg_cost)
        net.clear_gradients()
    paddle.enable_static()
    return losses


class TestSimnet(unittest.TestCase):
    def test_dygraph_static_same_loss(self):
        if paddle.is_compiled_with_cuda():
            paddle.fluid.set_flags({"FLAGS_cudnn_deterministic": True})
        conf_dict = create_conf_dict()
        dygraph_loss = train(conf_dict, to_static=False)
        static_loss = train(conf_dict, to_static=True)

        self.assertEqual(len(dygraph_loss), len(static_loss))
        for i in range(len(dygraph_loss)):
            self.assertAlmostEqual(dygraph_loss[i], static_loss[i])


if __name__ == '__main__':
    unittest.main()