adadelta.py 7.7 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable, name_scope

20 21
__all__ = []

J
Jiawei Wang 已提交
22 23

class Adadelta(Optimizer):
24
    r"""
J
Jiawei Wang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
    **Notes: This API does not support sparse parameter optimization.**

    Adadelta Optimizer. Please refer to this for details:
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:

    .. math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2

        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }

        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2

    Args:
41
        learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
J
Jiawei Wang 已提交
42 43 44
            It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
45
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
46 47 48 49
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
J
Jiawei Wang 已提交
50 51
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
52 53 54 55 56 57
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization. 
J
Jiawei Wang 已提交
58 59 60 61 62 63 64 65 66 67
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
68
	
J
Jiawei Wang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82
            import paddle
            import numpy as np
            inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")
            adadelta = paddle.optimizer.Adadelta(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
            back = out.backward()
            adadelta.step()
            adadelta.clear_grad()

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adadelta = paddle.optimizer.Adadelta(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                }],
                weight_decay=0.01)                   
            out.backward()
            adadelta.step()
            adadelta.clear_grad()

J
Jiawei Wang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    """

    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

    def __init__(self,
                 learning_rate=0.001,
                 epsilon=1.0e-6,
                 rho=0.95,
                 parameters=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None):
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        super(Adadelta, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name)
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho
132 133 134 135
        self._default_dict = {
            'epsilon': epsilon,
            'rho': rho,
        }
J
Jiawei Wang 已提交
136 137 138 139

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
140 141
        if isinstance(parameters, dict):
            parameters = parameters.get('params')
J
Jiawei Wang 已提交
142 143 144 145 146 147 148 149 150

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

151 152 153
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)

J
Jiawei Wang 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho},
            stop_gradient=True)

        return adadelta_op
178 179 180 181 182 183

    def _update_param_group(self, parameters):
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        self._rho = parameters.get('rho', self._default_dict['rho'])
        parameters = parameters.get('params')
        return parameters