# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .optimizer import Optimizer from ..fluid import core from ..fluid import framework from ..fluid.framework import Variable, name_scope __all__ = [] class Adadelta(Optimizer): r""" **Notes: This API does not support sparse parameter optimization.** Adadelta Optimizer. Please refer to this for details: `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD `_. The update is done as follows: .. math:: E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) } E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2 Args: learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``. It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001. epsilon (float): a small float number for numeric stability. Default 1.0e-6. rho (float): a floating point value indicating the decay rate. Default 0.95. parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \ This parameter is required in dygraph mode. And you can specify different options for \ different parameter groups such as the learning rate, weight decay, etc, \ then the parameters are list of dict. Note that the learning_rate in paramter groups \ represents the scale of base learning_rate. \ The default value is None in static mode, at this time all parameters will be updated. weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \ It canbe a float value as coeff of L2 regularization or \ :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`. If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \ the regularization setting here in optimizer will be ignored for this parameter. \ Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Examples: .. code-block:: python import paddle import numpy as np inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32") linear = paddle.nn.Linear(10, 10) inp = paddle.to_tensor(inp) out = linear(inp) loss = paddle.mean(out) beta1 = paddle.to_tensor([0.9], dtype="float32") beta2 = paddle.to_tensor([0.99], dtype="float32") adadelta = paddle.optimizer.Adadelta(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01) back = out.backward() adadelta.step() adadelta.clear_grad() #Note that the learning_rate of linear_2 is 0.01. linear_1 = paddle.nn.Linear(10, 10) linear_2 = paddle.nn.Linear(10, 10) inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1) out = linear_1(inp) out = linear_2(out) loss = paddle.mean(out) adadelta = paddle.optimizer.Adadelta( learning_rate=0.1, parameters=[{ 'params': linear_1.parameters() }, { 'params': linear_2.parameters(), 'weight_decay': 0.001, 'learning_rate': 0.1, }], weight_decay=0.01) out.backward() adadelta.step() adadelta.clear_grad() """ _avg_squared_grad_acc_str = "_avg_squared_grad" _avg_squared_update_acc_str = "_avg_squared_update" def __init__(self, learning_rate=0.001, epsilon=1.0e-6, rho=0.95, parameters=None, weight_decay=None, grad_clip=None, name=None): if learning_rate is None: raise ValueError("learning_rate is not set.") if epsilon is None: raise ValueError("epsilon is not set.") if rho is None: raise ValueError("rho is not set.") super(Adadelta, self).__init__( learning_rate=learning_rate, parameters=parameters, weight_decay=weight_decay, grad_clip=grad_clip, name=name) self.type = "adadelta" self._epsilon = epsilon self._rho = rho self._default_dict = { 'epsilon': epsilon, 'rho': rho, } def _create_accumulators(self, block, parameters): if not isinstance(block, framework.Block): raise TypeError("block is not instance of framework.Block.") if isinstance(parameters, dict): parameters = parameters.get('params') for p in parameters: self._add_accumulator(self._avg_squared_grad_acc_str, p) self._add_accumulator(self._avg_squared_update_acc_str, p) def _append_optimize_op(self, block, param_and_grad): if not isinstance(block, framework.Block): raise TypeError("block is not instance of framework.Block.") if isinstance(param_and_grad, dict): param_and_grad = self._update_param_group(param_and_grad) avg_squared_grad_acc = self._get_accumulator( self._avg_squared_grad_acc_str, param_and_grad[0]) avg_squared_update_acc = self._get_accumulator( self._avg_squared_update_acc_str, param_and_grad[0]) # Create the adadelta optimizer op adadelta_op = block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "AvgSquaredGrad": avg_squared_grad_acc, "AvgSquaredUpdate": avg_squared_update_acc }, outputs={ "ParamOut": param_and_grad[0], "AvgSquaredGradOut": avg_squared_grad_acc, "AvgSquaredUpdateOut": avg_squared_update_acc }, attrs={"epsilon": self._epsilon, "rho": self._rho}, stop_gradient=True) return adadelta_op def _update_param_group(self, parameters): self._epsilon = parameters.get('epsilon', self._default_dict['epsilon']) self._rho = parameters.get('rho', self._default_dict['rho']) parameters = parameters.get('params') return parameters