determinant_kernel_impl.h 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <Eigen/Dense>
#include <Eigen/LU>
#include <algorithm>
#include <cmath>
#include <vector>

23
#include "glog/logging.h"
24
#include "paddle/phi/common/amp_type_traits.h"
25

26
#include "paddle/phi/core/enforce.h"
27
#include "paddle/phi/core/tensor_utils.h"
28
#include "paddle/phi/kernels/determinant_kernel.h"
29 30 31 32 33 34

namespace phi {
namespace detail {
template <typename T>
class EigenMatrix {};

35 36 37 38 39 40 41
template <>
class EigenMatrix<phi::dtype::float16> {
 public:
  using MatrixType =
      Eigen::Matrix<phi::dtype::float16, Eigen::Dynamic, Eigen::Dynamic>;
};

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
template <>
class EigenMatrix<float> {
 public:
  using MatrixType = Eigen::MatrixXf;
};

template <>
class EigenMatrix<double> {
 public:
  using MatrixType = Eigen::MatrixXd;
};

inline int64_t GetBatchCount(const DDim dims) {
  int64_t batch_count = 1;
  auto dim_size = dims.size();
  PADDLE_ENFORCE_GE(
      dim_size,
      2,
      phi::errors::InvalidArgument(
          "the input matrix dimension size should greater than 2."));

  // Cumulative multiplying each dimension until the last 2 to get the batch
  // count,
  // for example a tensor with shape [3,3,3,3], the batch count of matrices is
  // 9.
  for (int64_t i = 0; i < dims.size() - 2; i++) {
    batch_count *= dims[i];
  }

  return batch_count;
}
}  // namespace detail

template <typename T, typename Context>
struct DeterminantFunctor {
  void operator()(const Context& dev_ctx,
                  const DenseTensor& input,
                  int64_t rank,
                  int64_t batch_count,
                  DenseTensor* output) {
    std::vector<T> input_vec;
    std::vector<T> output_vec;
84
    phi::TensorToVector(input, dev_ctx, &input_vec);
85
    using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
86 87 88 89 90 91 92 93 94 95 96
    for (int64_t i = 0; i < batch_count; ++i) {  // maybe can be parallel
      auto begin_iter = input_vec.begin() + i * rank * rank;
      auto end_iter = input_vec.begin() + (i + 1) * rank * rank;
      std::vector<T> sub_vec(begin_iter,
                             end_iter);  // get every square matrix data
      typename detail::EigenMatrix<T>::MatrixType matrix(rank, rank);
      for (int64_t i = 0; i < rank; ++i) {
        for (int64_t j = 0; j < rank; ++j) {
          matrix(i, j) = sub_vec[rank * i + j];
        }
      }
97 98
      output_vec.push_back(
          static_cast<T>(matrix.template cast<MPType>().determinant()));
99
    }
100
    phi::TensorFromVector(output_vec, dev_ctx, output);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  }
};

template <typename T, typename Context>
void DeterminantKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       DenseTensor* out) {
  auto input_dim = vectorize(x.dims());
  auto input_dim_size = input_dim.size();

  auto batch_count = detail::GetBatchCount(x.dims());
  VLOG(10) << "input dim:" << x.dims();
  PADDLE_ENFORCE_GE(
      input_dim_size,
      2,
      phi::errors::InvalidArgument(
          "the input matrix dimension size should greater than 2."));
  PADDLE_ENFORCE_EQ(input_dim[input_dim_size - 1],
                    input_dim[input_dim_size - 2],
                    phi::errors::InvalidArgument(
                        "the input matrix should be square matrix."));
  auto rank = input_dim[input_dim_size - 1];  // square matrix length
  DeterminantFunctor<T, Context>()(dev_ctx, x, rank, batch_count, out);
  auto output_dims = phi::slice_ddim(x.dims(), 0, input_dim_size - 2);
  if (input_dim_size > 2) {
    out->Resize(output_dims);
  } else {
    // when input is a two-dimension matrix, The det value is a number.
    out->Resize({1});
  }
  VLOG(10) << "output dim:" << out->dims();
}

}  // namespace phi