// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include "glog/logging.h" #include "paddle/phi/common/amp_type_traits.h" #include "paddle/phi/core/enforce.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/determinant_kernel.h" namespace phi { namespace detail { template class EigenMatrix {}; template <> class EigenMatrix { public: using MatrixType = Eigen::Matrix; }; template <> class EigenMatrix { public: using MatrixType = Eigen::MatrixXf; }; template <> class EigenMatrix { public: using MatrixType = Eigen::MatrixXd; }; inline int64_t GetBatchCount(const DDim dims) { int64_t batch_count = 1; auto dim_size = dims.size(); PADDLE_ENFORCE_GE( dim_size, 2, phi::errors::InvalidArgument( "the input matrix dimension size should greater than 2.")); // Cumulative multiplying each dimension until the last 2 to get the batch // count, // for example a tensor with shape [3,3,3,3], the batch count of matrices is // 9. for (int64_t i = 0; i < dims.size() - 2; i++) { batch_count *= dims[i]; } return batch_count; } } // namespace detail template struct DeterminantFunctor { void operator()(const Context& dev_ctx, const DenseTensor& input, int64_t rank, int64_t batch_count, DenseTensor* output) { std::vector input_vec; std::vector output_vec; phi::TensorToVector(input, dev_ctx, &input_vec); using MPType = typename phi::dtype::MPTypeTrait::Type; for (int64_t i = 0; i < batch_count; ++i) { // maybe can be parallel auto begin_iter = input_vec.begin() + i * rank * rank; auto end_iter = input_vec.begin() + (i + 1) * rank * rank; std::vector sub_vec(begin_iter, end_iter); // get every square matrix data typename detail::EigenMatrix::MatrixType matrix(rank, rank); for (int64_t i = 0; i < rank; ++i) { for (int64_t j = 0; j < rank; ++j) { matrix(i, j) = sub_vec[rank * i + j]; } } output_vec.push_back( static_cast(matrix.template cast().determinant())); } phi::TensorFromVector(output_vec, dev_ctx, output); } }; template void DeterminantKernel(const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) { auto input_dim = vectorize(x.dims()); auto input_dim_size = input_dim.size(); auto batch_count = detail::GetBatchCount(x.dims()); VLOG(10) << "input dim:" << x.dims(); PADDLE_ENFORCE_GE( input_dim_size, 2, phi::errors::InvalidArgument( "the input matrix dimension size should greater than 2.")); PADDLE_ENFORCE_EQ(input_dim[input_dim_size - 1], input_dim[input_dim_size - 2], phi::errors::InvalidArgument( "the input matrix should be square matrix.")); auto rank = input_dim[input_dim_size - 1]; // square matrix length DeterminantFunctor()(dev_ctx, x, rank, batch_count, out); auto output_dims = phi::slice_ddim(x.dims(), 0, input_dim_size - 2); if (input_dim_size > 2) { out->Resize(output_dims); } else { // when input is a two-dimension matrix, The det value is a number. out->Resize({1}); } VLOG(10) << "output dim:" << out->dims(); } } // namespace phi