tensor_util.h 13.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
16
#include <vector>
W
wanghuancoder 已提交
17

Y
Yi Wang 已提交
18
#include "paddle/fluid/framework/data_type.h"
6
633WHU 已提交
19
#include "paddle/fluid/framework/dlpack_tensor.h"
Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
D
dzhwinter 已提交
24 25 26 27

namespace paddle {
namespace framework {

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
class PrintOptions {
 public:
  static PrintOptions& Instance() {
    static PrintOptions instance;
    return instance;
  }
  ~PrintOptions() {}
  PrintOptions(const PrintOptions& o) = delete;
  const PrintOptions& operator=(const PrintOptions& o) = delete;

  int precision = 8;
  int threshold = 1000;
  int edgeitems = 3;
  int linewidth = 75;
  bool sci_mode = false;

 private:
  PrintOptions() {}
};

C
chengduo 已提交
48 49 50 51 52 53
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
W
wanghuancoder 已提交
54 55
class Tensor;

Y
Yi Wang 已提交
56
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
57
                const platform::DeviceContext& ctx, Tensor* dst);
C
chengduo 已提交
58 59 60 61 62 63 64 65

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
Y
Yi Wang 已提交
66 67
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst);
C
chengduo 已提交
68

F
fengjiayi 已提交
69 70
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst);
D
dzhwinter 已提交
71

Y
Yi Wang 已提交
72 73 74 75 76
template <typename T>
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst);
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
77

Y
Yi Wang 已提交
78 79 80 81 82
template <typename T>
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
83

84
// copy the result bool to cpu
Y
Yi Wang 已提交
85 86
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
87 88 89 90 91 92
bool TensorIsfinite(const framework::Tensor& tensor);

// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
D
dzhwinter 已提交
93

Y
Yi Wang 已提交
94 95 96 97
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
T
tangwei12 已提交
98 99 100
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape);
D
dzhwinter 已提交
101

J
Jack Zhou 已提交
102 103 104 105 106 107 108
// store the bool result tensor in out tensor
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out);

6
633WHU 已提交
109 110 111
// convert dlpack's DLTensor to tensor
void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst);

Y
Yi Wang 已提交
112 113 114
//
// The implementation of template functions.
//
D
dzhwinter 已提交
115

116 117 118 119 120 121 122 123 124 125 126
template <typename T>
void TensorFromArray(const T* src, const size_t& array_size,
                     const platform::DeviceContext& ctx, Tensor* dst) {
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(array_size)});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = array_size * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
127 128
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
129 130 131 132
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
133 134
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
135 136 137 138
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
}
139

D
dzhwinter 已提交
140
template <typename T>
Y
Yi Wang 已提交
141 142
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst) {
D
dzhwinter 已提交
143 144 145 146 147 148 149 150
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
151 152
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
D
dzhwinter 已提交
153 154 155 156
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
157 158
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
D
dzhwinter 已提交
159 160 161
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
162
#ifdef PADDLE_WITH_ASCEND_CL
163 164 165 166 167 168
  // NOTE(zhiqiu): Becareful that aclrtMemcpyAsync is different from
  // cudaMemcpyAsync.
  // cudaMemcpyAsync is actually "sync" between cpu <-> gpu.
  // aclrtMemcpyAsync is really "async" between cpu <-> npu.
  // Since vector is on cpu, I think this function should be a "sync" operation,
  // so pass nullptr as stream to  memory::Copy().
169
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
170 171
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size, nullptr);
172 173
  }
#endif
D
dzhwinter 已提交
174 175
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
// The fully specialized function should be inline to avoid
// multi-definition.
template <>
inline void TensorFromVector(const std::vector<bool>& src,
                             const platform::DeviceContext& ctx, Tensor* dst) {
  // vector<bool> has no data() member, use array instead.
  // See details:
  // https://stackoverflow.com/questions/46115669/why-does-stdvectorbool-have-no-data/46115714
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }

  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  if (platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
210 211
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size, nullptr);
212 213 214 215 216
  }
#endif
  delete[] array;
}

D
dzhwinter 已提交
217
template <typename T>
Y
Yi Wang 已提交
218
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
219 220 221 222 223 224 225 226 227 228
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
template <>
inline void TensorFromVector(const std::vector<bool>& src, Tensor* dst) {
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  delete[] array;
}

D
dzhwinter 已提交
246
template <typename T>
Y
Yi Wang 已提交
247 248
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst) {
D
dzhwinter 已提交
249 250 251 252 253 254 255 256
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
257
    memory::Copy(dst_place, dst_ptr,
258 259
                 BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr,
                 size);
D
dzhwinter 已提交
260 261 262 263
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
264
        dst_place, dst_ptr, BOOST_GET_CONST(platform::CUDAPlace, src.place()),
265
        src_ptr, size,
D
dzhwinter 已提交
266 267 268
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
269 270
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
271 272 273
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src.place()), src_ptr,
                 size, nullptr);
274 275
  }
#endif
D
dzhwinter 已提交
276 277
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
template <>
inline void TensorToVector(const Tensor& src,
                           const platform::DeviceContext& ctx,
                           std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  if (platform::is_cpu_place(src.place())) {
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr,
                 size);
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
        dst_place, dst_ptr, BOOST_GET_CONST(platform::CUDAPlace, src.place()),
        src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
306 307 308
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src.place()), src_ptr,
                 size, nullptr);
309 310 311 312 313 314 315 316
  }
#endif
  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

D
dzhwinter 已提交
317
template <typename T>
Y
Yi Wang 已提交
318
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
319 320 321 322 323 324 325
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

326 327 328 329 330
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));
D
dzhwinter 已提交
331

332 333
  memory::Copy(dst_place, dst_ptr,
               BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr, size);
D
dzhwinter 已提交
334
}
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
template <>
inline void TensorToVector(const Tensor& src, std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));

  memory::Copy(dst_place, dst_ptr,
               BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr, size);

  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

362
std::ostream& operator<<(std::ostream& os, const Tensor& t);
D
dzhwinter 已提交
363 364
}  // namespace framework
}  // namespace paddle