tensor_util.h 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
16
#include <vector>
W
wanghuancoder 已提交
17

Y
Yi Wang 已提交
18
#include "paddle/fluid/framework/data_type.h"
6
633WHU 已提交
19
#include "paddle/fluid/framework/dlpack_tensor.h"
Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
D
dzhwinter 已提交
24 25 26 27

namespace paddle {
namespace framework {

C
chengduo 已提交
28 29 30 31 32 33
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
W
wanghuancoder 已提交
34 35
class Tensor;

Y
Yi Wang 已提交
36
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
37
                const platform::DeviceContext& ctx, Tensor* dst);
C
chengduo 已提交
38 39 40 41 42 43 44 45

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
Y
Yi Wang 已提交
46 47
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst);
C
chengduo 已提交
48

F
fengjiayi 已提交
49 50
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst);
D
dzhwinter 已提交
51

Y
Yi Wang 已提交
52 53 54 55 56
template <typename T>
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst);
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
57

Y
Yi Wang 已提交
58 59 60 61 62
template <typename T>
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
63

64
// copy the result bool to cpu
Y
Yi Wang 已提交
65 66
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
67 68 69 70 71 72
bool TensorIsfinite(const framework::Tensor& tensor);

// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
D
dzhwinter 已提交
73

Y
Yi Wang 已提交
74 75 76 77
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
T
tangwei12 已提交
78 79 80
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape);
D
dzhwinter 已提交
81

J
Jack Zhou 已提交
82 83 84 85 86 87 88
// store the bool result tensor in out tensor
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out);

6
633WHU 已提交
89 90 91
// convert dlpack's DLTensor to tensor
void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst);

Y
Yi Wang 已提交
92 93 94
//
// The implementation of template functions.
//
D
dzhwinter 已提交
95

96 97 98 99 100 101 102 103 104 105 106
template <typename T>
void TensorFromArray(const T* src, const size_t& array_size,
                     const platform::DeviceContext& ctx, Tensor* dst) {
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(array_size)});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = array_size * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
107 108
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
109 110 111 112
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
113 114
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
115 116 117 118
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
}
D
dzhwinter 已提交
119
template <typename T>
Y
Yi Wang 已提交
120 121
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst) {
D
dzhwinter 已提交
122 123 124 125 126 127 128 129
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
130 131
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
D
dzhwinter 已提交
132 133 134 135
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
136 137
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
D
dzhwinter 已提交
138 139 140 141 142
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
}

D
dzhwinter 已提交
143
template <typename T>
Y
Yi Wang 已提交
144
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
145 146 147 148 149 150 151 152 153 154
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

D
dzhwinter 已提交
155
template <typename T>
Y
Yi Wang 已提交
156 157
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst) {
D
dzhwinter 已提交
158 159 160 161 162 163 164 165
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
166
    memory::Copy(dst_place, dst_ptr,
167 168
                 BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr,
                 size);
D
dzhwinter 已提交
169 170 171 172
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
173
        dst_place, dst_ptr, BOOST_GET_CONST(platform::CUDAPlace, src.place()),
174
        src_ptr, size,
D
dzhwinter 已提交
175 176 177 178 179
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
}

D
dzhwinter 已提交
180
template <typename T>
Y
Yi Wang 已提交
181
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
182 183 184 185 186 187 188
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

189 190 191 192 193
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));
D
dzhwinter 已提交
194

195 196
  memory::Copy(dst_place, dst_ptr,
               BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr, size);
D
dzhwinter 已提交
197
}
198 199

std::ostream& operator<<(std::ostream& os, const Tensor& t);
D
dzhwinter 已提交
200 201
}  // namespace framework
}  // namespace paddle