elementwise_mul_op.cu 5.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
17 18
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
W
Wu Yi 已提交
19
#include "paddle/fluid/platform/float16.h"
20 21

namespace ops = paddle::operators;
W
Wu Yi 已提交
22
namespace plat = paddle::platform;
23

24 25 26
namespace paddle {
namespace operators {

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
template <typename T>
struct SameDimsElemwiseMul<platform::CUDADeviceContext, T> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    MulRangeFunctor<T> functor(x->data<T>(), y->data<T>(), z->data<T>());
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx,
                                                              x->numel());
    for_range(functor);
  }
};

template <>
struct SameDimsElemwiseMul<platform::CUDADeviceContext, platform::float16> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    auto size = x->numel();
46 47 48
    dim3 grid_size = dim3(((size + 1) / 2 + PADDLE_CUDA_THREAD_SIZE - 1) /
                              PADDLE_CUDA_THREAD_SIZE,
                          1);
49 50 51 52 53 54 55
    dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
    const half* x2 =
        reinterpret_cast<const half*>(x->data<platform::float16>());
    const half* y2 =
        reinterpret_cast<const half*>(y->data<platform::float16>());
    half* z2 = reinterpret_cast<half*>(z->data<platform::float16>());
    SameDimsElemwiseMulCUDAKernel<<<
56
        grid_size, block_size, 0,
57 58 59 60 61
        ctx.template device_context<platform::CUDADeviceContext>().stream()>>>(
        x2, y2, z2, size);
  }
};

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename T>
static __global__ void SimpleElemwiseMulGradCUDAKernel(const T* x, const T* y,
                                                       const T* out,
                                                       const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    T o = dout[col];
    dx[col] = y[col] * o;
    dy[col] = x[col] * o;
    col += blockDim.x * gridDim.x;
  }
}

78 79 80 81 82 83 84 85 86 87
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
  auto size = x->numel();
88
  dim3 grid_size =
89 90
      dim3((size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  SimpleElemwiseMulGradCUDAKernel<
91
      T><<<grid_size, block_size, 0,
92 93 94 95
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      x->data<T>(), y->data<T>(), out->data<T>(), dout->data<T>(), size,
      dx->mutable_data<T>(ctx.GetPlace()), dy->mutable_data<T>(ctx.GetPlace()));
}
96 97 98 99

}  // namespace operators
}  // namespace paddle

Q
QI JUN 已提交
100
REGISTER_OP_CUDA_KERNEL(
W
Wu Yi 已提交
101 102 103 104
    elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
105 106 107
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex64>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex128>);
Q
QI JUN 已提交
108
REGISTER_OP_CUDA_KERNEL(
109
    elementwise_mul_grad,
W
Wu Yi 已提交
110 111 112 113
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
114 115 116
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::complex64>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::complex128>);
117 118 119 120 121
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int>,
122
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
123
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
124
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
125 126 127
                                        plat::complex64>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
                                        plat::complex128>);