dist_mnist.py 3.9 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

T
typhoonzero 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from functools import reduce
from test_dist_base import TestDistRunnerBase, runtime_main
32
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
T
typhoonzero 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

DTYPE = "float32"
paddle.dataset.mnist.fetch()

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
W
Wu Yi 已提交
50
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
51
            value=0.01)))
T
typhoonzero 已提交
52 53 54 55 56 57 58
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
W
Wu Yi 已提交
59
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
60
            value=0.01)))
T
typhoonzero 已提交
61 62 63 64 65 66 67 68 69 70 71

    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
72
            initializer=fluid.initializer.Constant(value=0.01)))
T
typhoonzero 已提交
73 74 75 76
    return predict


class TestDistMnist2x2(TestDistRunnerBase):
77
    def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None):
T
typhoonzero 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        # Input data
        images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        # Train program
        predict = cnn_model(images)
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        # Evaluator
        batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
        batch_acc = fluid.layers.accuracy(
            input=predict, label=label, total=batch_size_tensor)

        inference_program = fluid.default_main_program().clone()
        # Optimization
W
Wu Yi 已提交
94 95 96
        # TODO(typhoonzero): fix distributed adam optimizer
        # opt = fluid.optimizer.AdamOptimizer(
        #     learning_rate=0.001, beta1=0.9, beta2=0.999)
97 98 99 100 101
        if not use_dgc:
            opt = fluid.optimizer.Momentum(learning_rate=self.lr, momentum=0.9)
        else:
            opt = fluid.optimizer.DGCMomentumOptimizer(
                learning_rate=self.lr, momentum=0.9, rampup_begin_step=0)
T
typhoonzero 已提交
102 103 104

        # Reader
        train_reader = paddle.batch(
105
            paddle.dataset.mnist.test(), batch_size=batch_size)
T
typhoonzero 已提交
106 107
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)
108 109 110 111 112 113 114 115

        if dist_strategy:
            dist_opt = fleet.distributed_optimizer(
                optimizer=opt, strategy=dist_strategy)
            _, param_grads = dist_opt.minimize(avg_cost)
        else:
            opt.minimize(avg_cost)

T
typhoonzero 已提交
116 117 118 119 120
        return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict


if __name__ == "__main__":
    runtime_main(TestDistMnist2x2)