paddle_analysis_config.h 33.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16 17 18 19 20 21 22 23 24

///
/// \file paddle_analysis_config.h
///
/// \brief Paddle Analysis Config API信息
///
/// \author paddle-infer@baidu.com
/// \date 2020-03-20
/// \since 1.7
///

25 26 27
#pragma once

#include <cassert>
28
#include <map>
29 30
#include <memory>
#include <string>
31
#include <unordered_set>
32
#include <utility>
33
#include <vector>
34

35
#include "paddle_infer_declare.h"  // NOLINT
36

37
/*! \file */
38 39 40 41
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
42 43 44
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif
45 46 47 48

namespace paddle {

class AnalysisPredictor;
49
struct MkldnnQuantizerConfig;
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
struct LiteNNAdapterConfig {
  bool use_nnadapter{false};
  std::string nnadapter_model_cache_dir;
  std::map<std::string, std::vector<char>> nnadapter_model_cache_buffers;
  std::vector<std::string> nnadapter_device_names;
  std::string nnadapter_context_properties;
  std::string nnadapter_subgraph_partition_config_path;
  std::string nnadapter_subgraph_partition_config_buffer;

  LiteNNAdapterConfig& SetDeviceNames(const std::vector<std::string>& names);

  LiteNNAdapterConfig& SetContextProperties(const std::string& properties);

  LiteNNAdapterConfig& SetModelCacheDir(const std::string& dir);

  LiteNNAdapterConfig& SetModelCacheBuffers(
      const std::string& model_cache_token,
      const std::vector<char>& model_cache_buffer);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigPath(const std::string& path);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigBuffer(
      const std::string& buffer);

  LiteNNAdapterConfig& Enable();
  LiteNNAdapterConfig& Disable();
};

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
struct DistConfig {
  bool use_dist_model() const { return use_dist_model_; }
  void EnableDistModel(bool use_dist_model) {
    use_dist_model_ = use_dist_model;
  }

  std::vector<std::string> trainer_endpoints() const {
    return trainer_endpoints_;
  }

  std::string current_endpoint() const { return current_endpoint_; }

  void SetEndpoints(const std::vector<std::string>& trainer_endpoints,
                    const std::string& current_endpoint) {
    trainer_endpoints_ = trainer_endpoints;
    current_endpoint_ = current_endpoint;
  }

  int64_t nranks() const { return nranks_; }

  int64_t rank() const { return rank_; }

  void SetRanks(int64_t nranks, int64_t rank) {
    nranks_ = nranks;
    rank_ = rank;
  }

  std::string comm_init_config() const { return comm_init_config_; }

  void SetCommInitConfig(const std::string& comm_init_config) {
    comm_init_config_ = comm_init_config;
  }

  void SetCarrierId(const std::string& carrier_id) { carrier_id_ = carrier_id; }

  std::string carrier_id() const { return carrier_id_; }

 protected:
  // DistModel Inference related
  bool use_dist_model_{false};  // whether use DistModel or not
  std::vector<std::string> trainer_endpoints_{};  // all trainers' endpoints
  std::string current_endpoint_{};                // current trainer's endpoint
  int64_t nranks_{1};               // total ranks (number of trainers)
  int64_t rank_{0};                 // rank
  std::string comm_init_config_{};  // converter config path
  std::string carrier_id_{"inference"};
};

127
///
128
/// \brief configuration manager for AnalysisPredictor.
129 130
/// \since 1.7.0
///
131
/// AnalysisConfig manages configurations of AnalysisPredictor.
132 133 134 135 136
/// During inference procedure, there are many parameters(model/params path,
/// place of inference, etc.)
/// to be specified, and various optimizations(subgraph fusion, memory
/// optimazation, TensorRT engine, etc.)
/// to be done. Users can manage these settings by creating and modifying an
137 138
/// AnalysisConfig,
/// and loading it into AnalysisPredictor.
139
///
140
struct PD_INFER_DECL AnalysisConfig {
141
  AnalysisConfig() = default;
142
  ///
143 144
  /// \brief Construct a new AnalysisConfig from another
  /// AnalysisConfig.
145
  ///
146
  /// \param[in] other another AnalysisConfig
147
  ///
148
  explicit AnalysisConfig(const AnalysisConfig& other);
149
  ///
150
  /// \brief Construct a new AnalysisConfig from a no-combined model.
151 152 153
  ///
  /// \param[in] model_dir model directory of the no-combined model.
  ///
154
  explicit AnalysisConfig(const std::string& model_dir);
155
  ///
156
  /// \brief Construct a new AnalysisConfig from a combined model.
157 158 159 160
  ///
  /// \param[in] prog_file model file path of the combined model.
  /// \param[in] params_file params file path of the combined model.
  ///
161 162
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
163 164 165
  ///
  /// \brief Precision of inference in TensorRT.
  ///
N
nhzlx 已提交
166
  enum class Precision {
167 168 169
    kFloat32 = 0,  ///< fp32
    kInt8,         ///< int8
    kHalf,         ///< fp16
N
nhzlx 已提交
170
  };
171

172 173 174 175 176
  ///
  /// \brief Set the no-combined model dir path.
  ///
  /// \param model_dir model dir path.
  ///
177
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
178 179 180 181 182 183 184 185

  ///
  /// \brief Set the combined model with two specific pathes for program and
  /// parameters.
  ///
  /// \param prog_file_path model file path of the combined model.
  /// \param params_file_path params file path of the combined model.
  ///
186 187
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
188 189 190 191 192
  ///
  /// \brief Set the model file path of a combined model.
  ///
  /// \param x model file path.
  ///
193
  void SetProgFile(const std::string& x) { prog_file_ = x; }
194 195 196 197 198
  ///
  /// \brief Set the params file path of a combined model.
  ///
  /// \param x params file path.
  ///
199
  void SetParamsFile(const std::string& x) { params_file_ = x; }
200 201 202 203 204 205

  ///
  /// \brief Set the path of optimization cache directory.
  ///
  /// \param opt_cache_dir the path of optimization cache directory.
  ///
206 207 208
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
209 210 211 212 213
  ///
  /// \brief Get the model directory path.
  ///
  /// \return const std::string& The model directory path.
  ///
214
  const std::string& model_dir() const { return model_dir_; }
215 216 217 218 219
  ///
  /// \brief Get the program file path.
  ///
  /// \return const std::string& The program file path.
  ///
220
  const std::string& prog_file() const { return prog_file_; }
221 222 223 224 225
  ///
  /// \brief Get the combined parameters file.
  ///
  /// \return const std::string& The combined parameters file.
  ///
226 227
  const std::string& params_file() const { return params_file_; }

228
  // Padding related.
229 230 231 232 233

  ///
  /// \brief Turn off FC Padding.
  ///
  ///
234
  void DisableFCPadding();
235 236 237 238 239
  ///
  /// \brief A boolean state telling whether fc padding is used.
  ///
  /// \return bool Whether fc padding is used.
  ///
240 241
  bool use_fc_padding() const { return use_fc_padding_; }

242
  // GPU related.
243

244 245 246 247 248 249
  ///
  /// \brief Turn on GPU.
  ///
  /// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
  /// \param device_id device_id the GPU card to use (default is 0).
  ///
250
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
251 252 253 254
  ///
  /// \brief Turn off GPU.
  ///
  ///
255
  void DisableGpu();
256 257 258 259 260 261 262 263 264 265 266 267 268
  ///
  /// \brief Enable GPU fp16 precision computation, in experimental state.
  ///
  /// \param op_list The operator type list.
  ///
  void Exp_EnableUseGpuFp16(std::unordered_set<std::string> op_list = {});
  ///
  /// \brief A boolean state telling whether the GPU fp16 precision is turned
  /// on.
  ///
  /// \return bool Whether the GPU fp16 precision is turned on.
  ///
  bool gpu_fp16_enabled() const { return use_gpu_fp16_; }
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  ///
  /// \brief Turn on XPU.
  ///
  /// \param l3_workspace_size The size of the video memory allocated by the l3
  ///         cache, the maximum is 16M.
  /// \param locked Whether the allocated L3 cache can be locked. If false,
  ///       it means that the L3 cache is not locked, and the allocated L3
  ///       cache can be shared by multiple models, and multiple models
  ///       sharing the L3 cache will be executed sequentially on the card.
  /// \param autotune Whether to autotune the conv operator in the model. If
  ///       true, when the conv operator of a certain dimension is executed
  ///       for the first time, it will automatically search for a better
  ///       algorithm to improve the performance of subsequent conv operators
  ///       of the same dimension.
  /// \param autotune_file Specify the path of the autotune file. If
  ///       autotune_file is specified, the algorithm specified in the
  ///       file will be used and autotune will not be performed again.
  /// \param precision Calculation accuracy of multi_encoder
  /// \param adaptive_seqlen Is the input of multi_encoder variable length
  ///
W
Wilber 已提交
290 291 292 293
  void EnableXpu(int l3_workspace_size = 0xfffc00, bool locked = false,
                 bool autotune = true, const std::string& autotune_file = "",
                 const std::string& precision = "int16",
                 bool adaptive_seqlen = false);
J
jianghaicheng 已提交
294 295 296 297

  ///
  /// \brief Turn on IPU.
  ///
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  /// \param ipu_device_num the number of IPUs.
  /// \param ipu_micro_batch_size the batch size in the graph, only work with
  /// mutable input shapes.
  /// \param ipu_enable_pipelining enable pipelining.
  /// \param ipu_batches_per_step the number of batches per run in pipelining.
  ///
  void EnableIpu(int ipu_device_num = 1, int ipu_micro_batch_size = 1,
                 bool ipu_enable_pipelining = false,
                 int ipu_batches_per_step = 1);

  ///
  /// \brief Set IPU config.
  ///
  /// \param ipu_enable_fp16 enable fp16.
  /// \param ipu_replica_num the number of graph replication.
  /// \param ipu_available_memory_proportion the available memory proportion for
  /// matmul/conv.
  /// \param ipu_enable_half_partial enable fp16 partial for matmul, only work
  /// with fp16.
  ///
  void SetIpuConfig(bool ipu_enable_fp16 = false, int ipu_replica_num = 1,
                    float ipu_available_memory_proportion = 1.0,
                    bool ipu_enable_half_partial = false);

322
  ///
323 324 325 326 327 328
  /// \brief Set XPU device id.
  ///
  /// \param device_id the XPU card to use (default is 0).
  ///
  void SetXpuDeviceId(int device_id = 0);
  ///
W
Wilber 已提交
329 330 331 332 333 334
  /// \brief Turn on NPU.
  ///
  /// \param device_id device_id the NPU card to use (default is 0).
  ///
  void EnableNpu(int device_id = 0);
  ///
335 336 337 338 339 340 341 342
  /// \brief Turn on CustomDevice.
  ///
  /// \param device_type device_type the custom device to use.
  ///
  /// \param device_id device_id the custom device to use (default is 0).
  ///
  void EnableCustomDevice(const std::string& device_type, int device_id);
  ///
343 344 345 346 347 348 349 350 351 352 353 354
  /// \brief Turn on ONNXRuntime.
  ///
  void EnableONNXRuntime();
  ///
  /// \brief Turn off ONNXRuntime.
  ///
  void DisableONNXRuntime();
  ///
  /// \brief Turn on ONNXRuntime Optimization.
  ///
  void EnableORTOptimization();
  ///
355 356 357 358
  /// \brief A boolean state telling whether the GPU is turned on.
  ///
  /// \return bool Whether the GPU is turned on.
  ///
359
  bool use_gpu() const { return use_gpu_; }
360
  ///
361 362 363 364 365 366
  /// \brief A boolean state telling whether the XPU is turned on.
  ///
  /// \return bool Whether the XPU is turned on.
  ///
  bool use_xpu() const { return use_xpu_; }
  ///
W
Wilber 已提交
367 368 369 370 371
  /// \brief A boolean state telling whether the NPU is turned on.
  ///
  /// \return bool Whether the NPU is turned on.
  ///
  bool use_npu() const { return use_npu_; }
J
jianghaicheng 已提交
372 373 374 375 376
  /// \brief A boolean state telling whether the IPU is turned on.
  ///
  /// \return bool Whether the IPU is turned on.
  ///
  bool use_ipu() const { return use_ipu_; }
377 378 379 380 381
  /// \brief A boolean state telling whether the CustomDevice is turned on.
  ///
  /// \return bool Whether the CustomDevice is turned on.
  ///
  bool use_custom_device() const { return use_custom_device_; }
W
Wilber 已提交
382
  ///
383 384 385 386 387 388 389 390 391 392 393 394 395
  /// \brief A boolean state telling whether the ONNXRuntime is turned on.
  ///
  /// \return bool Whether the ONNXRuntime is turned on.
  ///
  bool use_onnxruntime() const { return use_onnxruntime_; }
  ///
  /// \brief A boolean state telling whether the ONNXRuntime Optimization is
  /// turned on.
  ///
  /// \return bool Whether the ONNXRuntime Optimization is turned on.
  ///
  bool ort_optimization_enabled() const { return enable_ort_optimization_; }
  ///
396 397 398 399 400 401
  /// \brief Get the GPU device id.
  ///
  /// \return int The GPU device id.
  ///
  int gpu_device_id() const { return gpu_device_id_; }
  ///
402
  /// \brief Get the XPU device id.
403
  ///
404
  /// \return int The XPU device id.
405
  ///
406
  int xpu_device_id() const { return xpu_device_id_; }
407
  ///
W
Wilber 已提交
408 409 410 411 412
  /// \brief Get the NPU device id.
  ///
  /// \return int The NPU device id.
  ///
  int npu_device_id() const { return npu_device_id_; }
413
  /// \brief Get the number of IPU device .
J
jianghaicheng 已提交
414 415 416 417
  ///
  /// \return int The number of IPU device.
  ///
  int ipu_device_num() const { return ipu_device_num_; }
W
Wilber 已提交
418
  ///
419 420 421 422 423 424 425 426 427 428 429
  /// \brief Get the custom device id.
  ///
  /// \return int The custom device id.
  ///
  int custom_device_id() const { return custom_device_id_; }
  /// \brief Get the custom device type.
  ///
  /// \return string The custom device type.
  ///
  std::string custom_device_type() const { return custom_device_type_; }
  ///
430 431 432 433
  /// \brief Get the initial size in MB of the GPU memory pool.
  ///
  /// \return int The initial size in MB of the GPU memory pool.
  ///
434
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
435 436 437 438 439 440
  ///
  /// \brief Get the proportion of the initial memory pool size compared to the
  /// device.
  ///
  /// \return float The proportion of the initial memory pool size.
  ///
441
  float fraction_of_gpu_memory_for_pool() const;
442

443 444 445 446 447
  // CUDNN related.
  ///
  /// \brief Turn on CUDNN.
  ///
  ///
448
  void EnableCUDNN();
449 450 451 452 453
  ///
  /// \brief A boolean state telling whether to use CUDNN.
  ///
  /// \return bool Whether to use CUDNN.
  ///
454 455
  bool cudnn_enabled() const { return use_cudnn_; }

456 457 458 459 460 461
  ///
  /// \brief Control whether to perform IR graph optimization.
  /// If turned off, the AnalysisConfig will act just like a NativeConfig.
  ///
  /// \param x Whether the ir graph optimization is actived.
  ///
462
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
463 464 465 466 467 468
  ///
  /// \brief A boolean state telling whether the ir graph optimization is
  /// actived.
  ///
  /// \return bool Whether to use ir graph optimization.
  ///
469
  bool ir_optim() const { return enable_ir_optim_; }
470

471 472 473 474 475 476 477
  ///
  /// \brief INTERNAL Determine whether to use the feed and fetch operators.
  /// Just for internal development, not stable yet.
  /// When ZeroCopyTensor is used, this should be turned off.
  ///
  /// \param x Whether to use the feed and fetch operators.
  ///
478
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
479 480 481 482 483 484
  ///
  /// \brief A boolean state telling whether to use the feed and fetch
  /// operators.
  ///
  /// \return bool Whether to use the feed and fetch operators.
  ///
485
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
486

487 488 489 490 491 492 493 494 495 496 497
  ///
  /// \brief Control whether to specify the inputs' names.
  /// The ZeroCopyTensor type has a name member, assign it with the
  /// corresponding
  /// variable name. This is used only when the input ZeroCopyTensors passed to
  /// the
  /// AnalysisPredictor.ZeroCopyRun() cannot follow the order in the training
  /// phase.
  ///
  /// \param x Whether to specify the inputs' names.
  ///
498
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
499 500 501 502 503 504 505
  ///
  /// \brief A boolean state tell whether the input ZeroCopyTensor names
  /// specified should
  /// be used to reorder the inputs in AnalysisPredictor.ZeroCopyRun().
  ///
  /// \return bool Whether to specify the inputs' names.
  ///
506
  bool specify_input_name() const { return specify_input_name_; }
507

508 509 510 511 512 513 514 515 516 517
  ///
  /// \brief Turn on the TensorRT engine.
  /// The TensorRT engine will accelerate some subgraphes in the original Fluid
  /// computation graph. In some models such as resnet50, GoogleNet and so on,
  /// it gains significant performance acceleration.
  ///
  /// \param workspace_size The memory size(in byte) used for TensorRT
  /// workspace.
  /// \param max_batch_size The maximum batch size of this prediction task,
  /// better set as small as possible for less performance loss.
518
  /// \param min_subgraph_size The minimum TensorRT subgraph size needed, if a
519 520 521 522 523 524 525 526
  /// subgraph is smaller than this, it will not be transferred to TensorRT
  /// engine.
  /// \param precision The precision used in TensorRT.
  /// \param use_static Serialize optimization information to disk for reusing.
  /// \param use_calib_mode Use TRT int8 calibration(post training
  /// quantization).
  ///
  ///
527 528 529 530 531
  void EnableTensorRtEngine(int workspace_size = 1 << 20,
                            int max_batch_size = 1, int min_subgraph_size = 3,
                            Precision precision = Precision::kFloat32,
                            bool use_static = false,
                            bool use_calib_mode = true);
532 533 534 535 536
  ///
  /// \brief A boolean state telling whether the TensorRT engine is used.
  ///
  /// \return bool Whether the TensorRT engine is used.
  ///
537
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
538
  ///
539 540 541 542 543 544
  /// \brief  Get the TensorRT engine precision.
  ///
  /// \return Precision Get the TensorRT engine precision.
  ///
  Precision tensorrt_precision_mode() const { return tensorrt_precision_mode_; }
  ///
545 546 547 548 549 550 551
  /// \brief Set min, max, opt shape for TensorRT Dynamic shape mode.
  /// \param min_input_shape The min input shape of the subgraph input.
  /// \param max_input_shape The max input shape of the subgraph input.
  /// \param opt_input_shape The opt input shape of the subgraph input.
  /// \param disable_trt_plugin_fp16 Setting this parameter to true means that
  /// TRT plugin will not run fp16.
  ///
552 553 554 555 556
  void SetTRTDynamicShapeInfo(
      std::map<std::string, std::vector<int>> min_input_shape,
      std::map<std::string, std::vector<int>> max_input_shape,
      std::map<std::string, std::vector<int>> optim_input_shape,
      bool disable_trt_plugin_fp16 = false);
557 558 559 560 561 562
  ///
  /// \brief A boolean state telling whether the trt dynamic_shape is used.
  ///
  /// \return bool Whether the trt dynamic_shape is used.
  ///
  bool tensorrt_dynamic_shape_enabled() const {
W
Wilber 已提交
563
    return !min_input_shape_.empty();
564
  }
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
  ///
  /// \brief Enable tuned tensorrt dynamic shape.
  ///
  /// \param shape_range_info_path the path to shape_info file got in
  /// CollectShapeInfo
  /// mode.
  /// \param allow_build_at_runtime allow build trt engine at runtime.
  ///
  void EnableTunedTensorRtDynamicShape(const std::string& shape_range_info_path,
                                       bool allow_build_at_runtime = true);

  ///
  /// \brief A boolean state telling whether to use tuned tensorrt dynamic
  /// shape.
  ///
  bool tuned_tensorrt_dynamic_shape();

  ///
  /// \brief A boolean state telling whether to allow building trt engine at
  /// runtime.
  ///
  bool trt_allow_build_at_runtime();

  ///
  /// \brief Collect shape info of all tensors in compute graph.
  ///
  /// \param shape_range_info_path the path to save shape info.
  ///
  void CollectShapeRangeInfo(const std::string& shape_range_info_path);

  ///
  /// \brief the shape info path in CollectShapeInfo mode.
  ///
  /// \return the shape info path.
  ///
  const std::string& shape_range_info_path();

  ///
  /// \brief A boolean state telling whether to collect shape info.
  ///
  /// \return bool Whether to collect shape info.
  ///
  bool shape_range_info_collected();

609 610 611 612 613 614
  ///
  /// \brief Prevent ops running in Paddle-TRT
  /// NOTE: just experimental, not an official stable API, easy to be broken.
  ///
  void Exp_DisableTensorRtOPs(const std::vector<std::string>& ops);

615 616
  ///
  /// \brief Replace some TensorRT plugins to TensorRT OSS(
617 618 619
  /// https://github.com/NVIDIA/TensorRT), with which some models's inference
  /// may be more high-performance. Libnvinfer_plugin.so greater than
  /// V7.2.1 is needed.
620
  ///
621
  void EnableVarseqlen();
622

623 624 625 626 627
  ///
  /// \brief A boolean state telling whether to use the TensorRT OSS.
  ///
  /// \return bool Whether to use the TensorRT OSS.
  ///
628
  bool tensorrt_varseqlen_enabled() { return trt_use_varseqlen_; }
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643
  ///
  /// \brief Enable TensorRT DLA
  /// \param dla_core ID of DLACore, which should be 0, 1,
  ///        ..., IBuilder.getNbDLACores() - 1
  ///
  void EnableTensorRtDLA(int dla_core = 0);

  ///
  /// \brief A boolean state telling whether to use the TensorRT DLA.
  ///
  /// \return bool Whether to use the TensorRT DLA.
  ///
  bool tensorrt_dla_enabled() { return trt_use_dla_; }

644 645 646
  void EnableTensorRtInspector();
  bool tensorrt_inspector_enabled() { return trt_use_inspector_; }

D
denglin-github 已提交
647 648 649
  void EnableDlnne(int min_subgraph_size = 3);
  bool dlnne_enabled() const { return use_dlnne_; }

650 651 652 653 654 655 656
  ///
  /// \brief Turn on the usage of Lite sub-graph engine.
  ///
  /// \param precision_mode Precion used in Lite sub-graph engine.
  /// \param passes_filter Set the passes used in Lite sub-graph engine.
  /// \param ops_filter Operators not supported by Lite.
  ///
石晓伟 已提交
657 658
  void EnableLiteEngine(
      AnalysisConfig::Precision precision_mode = Precision::kFloat32,
659
      bool zero_copy = false,
石晓伟 已提交
660 661 662
      const std::vector<std::string>& passes_filter = {},
      const std::vector<std::string>& ops_filter = {});

663 664 665 666 667 668
  ///
  /// \brief A boolean state indicating whether the Lite sub-graph engine is
  /// used.
  ///
  /// \return bool whether the Lite sub-graph engine is used.
  ///
石晓伟 已提交
669 670
  bool lite_engine_enabled() const { return use_lite_; }

671 672 673 674 675 676 677
  ///
  /// \brief Control whether to debug IR graph analysis phase.
  /// This will generate DOT files for visualizing the computation graph after
  /// each analysis pass applied.
  ///
  /// \param x whether to debug IR graph analysis phase.
  ///
Y
Yan Chunwei 已提交
678
  void SwitchIrDebug(int x = true);
679

680 681 682 683
  ///
  /// \brief Turn on MKLDNN.
  ///
  ///
L
luotao1 已提交
684
  void EnableMKLDNN();
685 686 687
  ///
  /// \brief Set the cache capacity of different input shapes for MKLDNN.
  /// Default value 0 means not caching any shape.
688 689
  /// Please see MKL-DNN Data Caching Design Document:
  /// https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/mkldnn/caching/caching.md
690 691 692
  ///
  /// \param capacity The cache capacity.
  ///
693
  void SetMkldnnCacheCapacity(int capacity);
694 695 696 697 698
  ///
  /// \brief A boolean state telling whether to use the MKLDNN.
  ///
  /// \return bool Whether to use the MKLDNN.
  ///
699 700
  bool mkldnn_enabled() const { return use_mkldnn_; }

701 702 703 704 705 706
  ///
  /// \brief Set the number of cpu math library threads.
  ///
  /// \param cpu_math_library_num_threads The number of cpu math library
  /// threads.
  ///
707
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
708 709 710 711 712 713
  ///
  /// \brief An int state telling how many threads are used in the CPU math
  /// library.
  ///
  /// \return int The number of threads used in the CPU math library.
  ///
714 715 716 717
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

718 719 720 721 722
  ///
  /// \brief Transform the AnalysisConfig to NativeConfig.
  ///
  /// \return NativeConfig The NativeConfig transformed.
  ///
Y
Yan Chunwei 已提交
723
  NativeConfig ToNativeConfig() const;
724 725 726 727 728
  ///
  /// \brief Specify the operator type list to use MKLDNN acceleration.
  ///
  /// \param op_list The operator type list.
  ///
729 730 731
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }
732

733 734 735 736
  ///
  /// \brief Turn on MKLDNN quantization.
  ///
  ///
737 738
  void EnableMkldnnQuantizer();

B
baoachun 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752
  ///
  /// \brief Turn on MKLDNN int8.
  ///
  /// \param op_list The operator type list.
  ///
  void EnableMkldnnInt8(const std::unordered_set<std::string>& op_list = {});

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Int8.
  ///
  /// \return bool Whether to use the MKLDNN Int8.
  ///
  bool mkldnn_int8_enabled() const { return use_mkldnn_int8_; }

753 754 755 756 757 758 759 760 761 762 763 764 765
  ///
  /// \brief Turn on MKLDNN bfloat16.
  ///
  ///
  void EnableMkldnnBfloat16();

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Bfloat16.
  ///
  /// \return bool Whether to use the MKLDNN Bfloat16.
  ///
  bool mkldnn_bfloat16_enabled() const { return use_mkldnn_bfloat16_; }

766 767 768 769 770 771 772 773
  /// \brief Specify the operator type list to use Bfloat16 acceleration.
  ///
  /// \param op_list The operator type list.
  ///
  void SetBfloat16Op(std::unordered_set<std::string> op_list) {
    bfloat16_enabled_op_types_ = op_list;
  }

774 775 776 777 778 779 780 781
  ///
  /// \brief A boolean state telling whether the thread local CUDA stream is
  /// enabled.
  ///
  /// \return bool Whether the thread local CUDA stream is enabled.
  ///
  bool thread_local_stream_enabled() const { return thread_local_stream_; }

782 783 784 785 786
  ///
  /// \brief A boolean state telling whether the MKLDNN quantization is enabled.
  ///
  /// \return bool Whether the MKLDNN quantization is enabled.
  ///
787 788
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

789 790 791 792 793
  ///
  /// \brief Get MKLDNN quantizer config.
  ///
  /// \return MkldnnQuantizerConfig* MKLDNN quantizer config.
  ///
794
  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
795

796 797 798 799 800 801 802 803 804
  ///
  /// \brief Specify the memory buffer of program and parameter.
  /// Used when model and params are loaded directly from memory.
  ///
  /// \param prog_buffer The memory buffer of program.
  /// \param prog_buffer_size The size of the model data.
  /// \param params_buffer The memory buffer of the combined parameters file.
  /// \param params_buffer_size The size of the combined parameters data.
  ///
T
Tao Luo 已提交
805
  void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
806
                      const char* params_buffer, size_t params_buffer_size);
807 808 809 810 811 812
  ///
  /// \brief A boolean state telling whether the model is set from the CPU
  /// memory.
  ///
  /// \return bool Whether model and params are loaded directly from memory.
  ///
T
Tao Luo 已提交
813
  bool model_from_memory() const { return model_from_memory_; }
T
Tao Luo 已提交
814

815 816 817 818
  ///
  /// \brief Turn on memory optimize
  /// NOTE still in development.
  ///
819 820 821
  /// \param x Whether to enable memory optimize.
  ///
  void EnableMemoryOptim(bool x = true);
822 823 824 825 826 827
  ///
  /// \brief A boolean state telling whether the memory optimization is
  /// activated.
  ///
  /// \return bool Whether the memory optimization is activated.
  ///
Y
Yan Chunwei 已提交
828
  bool enable_memory_optim() const;
829

830 831 832 833
  ///
  /// \brief Turn on profiling report.
  /// If not turned on, no profiling report will be generated.
  ///
834
  void EnableProfile();
835 836 837 838 839
  ///
  /// \brief A boolean state telling whether the profiler is activated.
  ///
  /// \return bool Whether the profiler is activated.
  ///
840 841
  bool profile_enabled() const { return with_profile_; }

842 843 844
  ///
  /// \brief Mute all logs in Paddle inference.
  ///
845
  void DisableGlogInfo();
846 847 848 849 850
  ///
  /// \brief A boolean state telling whether logs in Paddle inference are muted.
  ///
  /// \return bool Whether logs in Paddle inference are muted.
  ///
851 852
  bool glog_info_disabled() const { return !with_glog_info_; }

853 854 855 856 857
  ///
  /// \brief Set the AnalysisConfig to be invalid.
  /// This is to ensure that an AnalysisConfig can only be used in one
  /// AnalysisPredictor.
  ///
858
  void SetInValid() const { is_valid_ = false; }
859 860 861 862 863
  ///
  /// \brief A boolean state telling whether the AnalysisConfig is valid.
  ///
  /// \return bool Whether the AnalysisConfig is valid.
  ///
864
  bool is_valid() const { return is_valid_; }
Y
Yan Chunwei 已提交
865

866 867
  friend class ::paddle::AnalysisPredictor;

868 869 870 871 872
  ///
  /// \brief Get a pass builder for customize the passes in IR analysis phase.
  /// NOTE: Just for developer, not an official API, easy to be broken.
  ///
  ///
873
  PassStrategy* pass_builder() const;
874 875 876 877 878 879 880

  ///
  /// \brief Enable the GPU multi-computing stream feature.
  /// NOTE: The current behavior of this interface is to bind the computation
  /// stream to the thread, and this behavior may be changed in the future.
  ///
  void EnableGpuMultiStream();
881
  void PartiallyRelease();
882

883 884 885 886 887
  ///
  /// \brief Print the summary of config.
  ///
  std::string Summary();

888 889
  LiteNNAdapterConfig& NNAdapter() { return nnadapter_config_; }

890 891 892 893 894 895
  void SetDistConfig(const DistConfig& dist_config) {
    dist_config_ = dist_config;
  }

  const DistConfig& dist_config() const { return dist_config_; }

896 897 898 899 900 901
 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

902
 protected:
903 904
  // Model pathes.
  std::string model_dir_;
905 906
  mutable std::string prog_file_;
  mutable std::string params_file_;
907

S
Sylwester Fraczek 已提交
908
  // GPU related.
909
  bool use_gpu_{false};
910
  int gpu_device_id_{0};
911
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.
W
Wilber 已提交
912
  bool thread_local_stream_{false};
913 914
  bool use_gpu_fp16_{false};
  std::unordered_set<std::string> gpu_fp16_disabled_op_types_{
B
baoachun 已提交
915 916 917 918 919
      "conv2d_fusion", "conv2d", "roll", "strided_slice", "depthwise_conv2d",
      "unfold", "generate_proposals_v2", "nearest_interp_v2",
      "bilinear_interp_v2"
      "yolo_box",
      "multiclass_nms3", "matrix_nms"};
920

921 922
  bool use_cudnn_{false};

W
Wilber 已提交
923 924 925 926
  // NPU related
  bool use_npu_{false};
  int npu_device_id_{0};

927 928 929 930 931
  // CustomDevice related
  bool use_custom_device_{false};
  int custom_device_id_{0};
  std::string custom_device_type_;

932 933 934 935
  // ONNXRuntime related
  bool use_onnxruntime_{false};
  bool enable_ort_optimization_{false};

936 937 938
  // Padding related
  bool use_fc_padding_{true};

S
Sylwester Fraczek 已提交
939
  // TensorRT related.
940
  bool use_tensorrt_{false};
941 942
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
943
  int tensorrt_workspace_size_{1 << 30};
944 945 946 947
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
948
  int tensorrt_max_batchsize_{1};
949 950 951 952 953
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
954 955 956
  Precision tensorrt_precision_mode_{Precision::kFloat32};
  bool trt_use_static_engine_{false};
  bool trt_use_calib_mode_{true};
957
  bool trt_use_varseqlen_{false};
958
  bool trt_with_interleaved_{false};
959 960
  std::string tensorrt_transformer_posid_{""};
  std::string tensorrt_transformer_maskid_{""};
961 962
  bool trt_use_dla_{false};
  int trt_dla_core_{0};
963 964 965
  std::map<std::string, std::vector<int>> min_input_shape_{};
  std::map<std::string, std::vector<int>> max_input_shape_{};
  std::map<std::string, std::vector<int>> optim_input_shape_{};
966
  std::vector<std::string> trt_disabled_ops_{};
967
  bool disable_trt_plugin_fp16_{false};
968 969 970
  bool trt_allow_build_at_runtime_{false};
  // tune to get dynamic_shape info.
  bool trt_tuned_dynamic_shape_{false};
971
  bool trt_use_inspector_{false};
972 973 974 975 976 977

  // In CollectShapeInfo mode, we will collect the shape information of
  // all intermediate tensors in the compute graph and calculate the
  // min_shape, max_shape and opt_shape and save in shape_range_info_path_;
  bool collect_shape_range_info_{false};
  std::string shape_range_info_path_;
978

D
denglin-github 已提交
979 980 981 982
  // dlnne related.
  bool use_dlnne_{false};
  int dlnne_min_subgraph_size_{3};

Y
Yan Chunwei 已提交
983 984 985
  // memory reuse related.
  bool enable_memory_optim_{false};

986 987 988
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

T
Tao Luo 已提交
989
  bool model_from_memory_{false};
990

991 992 993 994 995 996 997 998
  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

999 1000
  bool with_profile_{false};

1001 1002
  bool with_glog_info_{true};

1003 1004 1005 1006
  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;
1007

石晓伟 已提交
1008 1009 1010 1011
  bool use_lite_{false};
  std::vector<std::string> lite_passes_filter_;
  std::vector<std::string> lite_ops_filter_;
  Precision lite_precision_mode_;
1012
  bool lite_zero_copy_;
石晓伟 已提交
1013

W
Wilber 已提交
1014
  // XPU related.
1015
  bool use_xpu_{false};
W
Wilber 已提交
1016
  int xpu_device_id_{0};
1017
  int xpu_l3_workspace_size_{0};
W
Wilber 已提交
1018 1019 1020 1021 1022
  bool xpu_locked_;
  bool xpu_autotune_;
  std::string xpu_autotune_file_;
  std::string xpu_precision_;
  bool xpu_adaptive_seqlen_;
1023

1024 1025 1026
  // NNAdapter related
  LiteNNAdapterConfig nnadapter_config_;

1027
  // mkldnn related.
W
Wilber 已提交
1028
  int mkldnn_cache_capacity_{10};
1029 1030
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
1031
  bool use_mkldnn_bfloat16_{false};
1032
  std::unordered_set<std::string> bfloat16_enabled_op_types_;
B
baoachun 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
  bool use_mkldnn_int8_{false};
  std::unordered_set<int> quantize_excluded_op_ids_{};
  std::unordered_set<std::string> quantize_enabled_op_types_{
      "concat",
      "conv2d",
      "depthwise_conv2d",
      "elementwise_add",
      "elementwise_mul",
      "fc",
      "matmul",
      "nearest_interp",
      "nearest_interp_v2",
      "pool2d",
      "prior_box",
      "reshape2",
      "transpose2",
      "fusion_gru",
      "fusion_lstm",
      "multi_gru",
      "slice"};
1053

J
jianghaicheng 已提交
1054 1055 1056
  // ipu related.
  bool use_ipu_{false};
  int ipu_device_num_{1};
1057
  int ipu_micro_batch_size_{1};
J
jianghaicheng 已提交
1058 1059
  bool ipu_enable_pipelining_{false};
  int ipu_batches_per_step_{1};
1060 1061 1062 1063 1064

  bool ipu_enable_fp16_{false};
  int ipu_replica_num_{1};
  float ipu_available_memory_proportion_{1.0};
  bool ipu_enable_half_partial_{false};
J
jianghaicheng 已提交
1065

1066 1067 1068 1069
  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
1070 1071
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
1072
  friend class paddle_infer::experimental::InternalUtils;
1073 1074 1075

  // fleet exe related
  DistConfig dist_config_{};
1076 1077 1078
};

}  // namespace paddle