elementwise_mul_op.cc 8.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16

17
#include <memory>
S
sneaxiy 已提交
18
#include <string>
19

W
Wu Yi 已提交
20
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
21
#include "paddle/fluid/platform/complex.h"
22
#include "paddle/fluid/prim/api/composite_backward/composite_backward_api.h"
23 24
#include "paddle/fluid/prim/utils/static/composite_grad_desc_maker.h"
#include "paddle/fluid/prim/utils/static/desc_tensor.h"
S
sneaxiy 已提交
25 26 27

namespace paddle {
namespace operators {
28 29 30 31 32 33
class ElementwiseMulOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Mul"; }
  std::string GetEquation() const override { return "Out = X \\\\odot Y"; }

  void AddInputX() override {
34 35 36 37
    AddInput(
        "X",
        "(Variable), Tensor or phi::DenseTensor of any dimensions. Its dtype "
        "should be int32, int64, float32, float64.");
38 39 40
  }

  void AddInputY() override {
41 42 43 44
    AddInput(
        "Y",
        "(Variable), Tensor or phi::DenseTensor of any dimensions. Its dtype "
        "should be int32, int64, float32, float64.");
45 46
  }

C
co63oc 已提交
47
  std::string GetOpFunctionality() const override {
48 49 50 51
    return "Multiply two tensors element-wise";
  }
};

H
hong 已提交
52 53
template <typename T>
class ElementwiseMulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
54
 public:
H
hong 已提交
55
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
56 57

 protected:
58
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
59
    op->SetType("elementwise_mul_grad");
H
hong 已提交
60 61 62 63 64 65
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetAttrMap(this->Attrs());
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
S
sneaxiy 已提交
66 67 68
  }
};

69 70 71
class ElementwiseMulCompositeGradOpMaker
    : public prim::CompositeGradOpMakerBase {
  using prim::CompositeGradOpMakerBase::CompositeGradOpMakerBase;
72 73 74 75 76 77 78 79 80 81 82 83

 public:
  void Apply() override {
    auto x = this->GetSingleForwardInput("X");
    auto y = this->GetSingleForwardInput("Y");
    auto out_grad = this->GetSingleOutputGrad("Out");
    auto x_grad = this->GetSingleInputGrad("X");
    auto x_grad_p = this->GetOutputPtr(&x_grad);
    auto x_grad_name = this->GetOutputName(x_grad);
    auto y_grad = this->GetSingleInputGrad("Y");
    auto y_grad_p = this->GetOutputPtr(&y_grad);
    auto y_grad_name = this->GetOutputName(y_grad);
J
Jiabin Yang 已提交
84 85 86 87 88 89 90
    int axis = static_cast<int>(this->Attr<int>("axis"));
    PADDLE_ENFORCE_EQ(
        axis,
        -1,
        phi::errors::InvalidArgument(
            "We only support axis = -1 in composite mul_grad but we got: ",
            axis));
91
    prim::multiply_grad<prim::DescTensor>(
J
Jiabin Yang 已提交
92
        x, y, out_grad, axis, x_grad_p, y_grad_p);
J
Jiabin Yang 已提交
93
    VLOG(6) << "Runing mul_grad composite func";
94 95 96 97 98
    this->RecoverOutputName(x_grad, x_grad_name);
    this->RecoverOutputName(y_grad, y_grad_name);
  }
};

H
hong 已提交
99 100
template <typename T>
class ElementwiseMulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
101
 public:
H
hong 已提交
102
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
103 104

 protected:
105
  void Apply(GradOpPtr<T> op) const override {
106
    op->SetType("elementwise_mul_grad_grad");
H
hong 已提交
107 108 109 110 111
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
112

H
hong 已提交
113
    op->SetAttrMap(this->Attrs());
114

H
hong 已提交
115 116 117
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
118 119 120
  }
};

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
class ElementwiseMulCompositeDoubleGradOpMaker
    : public prim::CompositeGradOpMakerBase {
  using prim::CompositeGradOpMakerBase::CompositeGradOpMakerBase;

 public:
  void Apply() override {
    // get input
    paddle::Tensor x = this->GetSingleForwardInput("X");
    paddle::Tensor y = this->GetSingleForwardInput("Y");
    paddle::Tensor out_grad = this->GetSingleOutputGrad("Out");
    paddle::optional<paddle::Tensor> ddx =
        this->GetOptionalSingleOutputGrad(framework::GradVarName("X"));
    paddle::optional<paddle::Tensor> ddy =
        this->GetOptionalSingleOutputGrad(framework::GradVarName("Y"));

    // get attr
    int axis = static_cast<int>(this->Attr<int>("axis"));
    PADDLE_ENFORCE_EQ(
        axis,
        -1,
        phi::errors::InvalidArgument("We only support axis = -1 in composite "
                                     "add_doubel_grad but we got: ",
                                     axis));

    // get output
    paddle::Tensor x_grad_t = this->GetSingleInputGrad("X");
    paddle::Tensor y_grad_t = this->GetSingleInputGrad("Y");
    paddle::Tensor grad_out_grad_t =
        this->GetSingleInputGrad(framework::GradVarName("Out"));

    // get output ptr
    paddle::Tensor* x_grad = this->GetOutputPtr(&x_grad_t);
    paddle::Tensor* y_grad = this->GetOutputPtr(&y_grad_t);
    paddle::Tensor* grad_out_grad = this->GetOutputPtr(&grad_out_grad_t);
    // get output orginal name
    std::string x_grad_name = this->GetOutputName(x_grad_t);
    std::string y_grad_name = this->GetOutputName(y_grad_t);
    std::string grad_out_grad_name = this->GetOutputName(grad_out_grad_t);

    VLOG(6) << "Runing multiply_double_grad composite func";
    prim::multiply_double_grad<prim::DescTensor>(
        x, y, out_grad, ddx, ddy, axis, x_grad, y_grad, grad_out_grad);

    // recover output name
    this->RecoverOutputName(x_grad_t, x_grad_name);
    this->RecoverOutputName(y_grad_t, y_grad_name);
    this->RecoverOutputName(grad_out_grad_t, grad_out_grad_name);
  }
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
template <typename T>
class ElementwiseMulTripleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elementwise_mul_triple_grad");
    // get input from double grad
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input("DOut"));
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("DDY", this->Input("DDY"));
    op->SetInput("D_DX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("D_DY", this->OutputGrad(framework::GradVarName("Y")));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));

    op->SetAttrMap(this->Attrs());

    // set outputs
    op->SetOutput("D_X", this->InputGrad("X"));
    op->SetOutput("D_Y", this->InputGrad("Y"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDX", this->InputGrad("DDX"));
    op->SetOutput("D_DDY", this->InputGrad("DDY"));
  }
};

S
sneaxiy 已提交
200 201 202
}  // namespace operators
}  // namespace paddle

203
namespace ops = paddle::operators;
204 205 206 207
REGISTER_OPERATOR(elementwise_mul,
                  ops::ElementwiseMulOp,
                  ops::ElementwiseMulOpMaker,
                  ops::ElementwiseOpInferVarType,
H
hong 已提交
208
                  ops::ElementwiseMulOpGradMaker<paddle::framework::OpDesc>,
209
                  ops::ElementwiseMulOpGradMaker<paddle::imperative::OpBase>,
210
                  ops::ElementwiseMulCompositeGradOpMaker);
H
hong 已提交
211
REGISTER_OPERATOR(
212 213
    elementwise_mul_grad,
    ops::ElementwiseOpGrad,
H
hong 已提交
214
    ops::ElementwiseMulDoubleGradMaker<paddle::framework::OpDesc>,
215 216
    ops::ElementwiseMulDoubleGradMaker<paddle::imperative::OpBase>,
    ops::ElementwiseMulCompositeDoubleGradOpMaker);
H
hong 已提交
217

218
REGISTER_OPERATOR(
219 220
    elementwise_mul_grad_grad,
    ops::ElementwiseOpDoubleGrad,
221 222 223 224 225
    ops::ElementwiseDoubleGradOpInplaceInferer,
    ops::ElementwiseMulTripleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseMulTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(elementwise_mul_triple_grad, ops::ElementwiseOpTripleGrad);
S
sneaxiy 已提交
226

227 228 229 230 231 232 233 234
REGISTER_OP_VERSION(elementwise_mul)
    .AddCheckpoint(
        R"ROC(Register elementwise_mul for adding the attribute of Scale_y)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_y",
            "In order to support the function of scaling the input Y when "
            "using the operator of elementwise_mul.",
            1.0f));