window.py 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import math
from typing import List
from typing import Tuple
from typing import Union

import paddle
from paddle import Tensor


22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
class WindowFunctionRegister(object):
    def __init__(self):
        self._functions_dict = dict()

    def register(self, func=None):
        def add_subfunction(func):
            name = func.__name__
            self._functions_dict[name] = func
            return func

        return add_subfunction

    def get(self, name):
        return self._functions_dict[name]


window_function_register = WindowFunctionRegister()


@window_function_register.register()
42 43 44 45 46
def _cat(x: List[Tensor], data_type: str) -> Tensor:
    l = [paddle.to_tensor(_, data_type) for _ in x]
    return paddle.concat(l)


47
@window_function_register.register()
48 49 50 51 52 53
def _acosh(x: Union[Tensor, float]) -> Tensor:
    if isinstance(x, float):
        return math.log(x + math.sqrt(x**2 - 1))
    return paddle.log(x + paddle.sqrt(paddle.square(x) - 1))


54
@window_function_register.register()
55
def _extend(M: int, sym: bool) -> bool:
56
    """Extend window by 1 sample if needed for DFT-even symmetry."""
57 58 59 60 61 62
    if not sym:
        return M + 1, True
    else:
        return M, False


63
@window_function_register.register()
64
def _len_guards(M: int) -> bool:
65
    """Handle small or incorrect window lengths."""
66 67 68 69 70 71
    if int(M) != M or M < 0:
        raise ValueError('Window length M must be a non-negative integer')

    return M <= 1


72
@window_function_register.register()
73
def _truncate(w: Tensor, needed: bool) -> Tensor:
74
    """Truncate window by 1 sample if needed for DFT-even symmetry."""
75 76 77 78 79 80
    if needed:
        return w[:-1]
    else:
        return w


81 82 83 84
@window_function_register.register()
def _general_gaussian(
    M: int, p, sig, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
85 86 87 88
    """Compute a window with a generalized Gaussian shape.
    This function is consistent with scipy.signal.windows.general_gaussian().
    """
    if _len_guards(M):
89
        return paddle.ones((M,), dtype=dtype)
90 91 92
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0
93
    w = paddle.exp(-0.5 * paddle.abs(n / sig) ** (2 * p))
94 95 96 97

    return _truncate(w, needs_trunc)


98 99 100 101
@window_function_register.register()
def _general_cosine(
    M: int, a: float, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
102 103 104 105
    """Compute a generic weighted sum of cosine terms window.
    This function is consistent with scipy.signal.windows.general_cosine().
    """
    if _len_guards(M):
106
        return paddle.ones((M,), dtype=dtype)
107 108
    M, needs_trunc = _extend(M, sym)
    fac = paddle.linspace(-math.pi, math.pi, M, dtype=dtype)
109
    w = paddle.zeros((M,), dtype=dtype)
110 111 112 113 114
    for k in range(len(a)):
        w += a[k] * paddle.cos(k * fac)
    return _truncate(w, needs_trunc)


115 116 117 118
@window_function_register.register()
def _general_hamming(
    M: int, alpha: float, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
119 120 121
    """Compute a generalized Hamming window.
    This function is consistent with scipy.signal.windows.general_hamming()
    """
122
    return _general_cosine(M, [alpha, 1.0 - alpha], sym, dtype=dtype)
123 124


125 126 127 128
@window_function_register.register()
def _taylor(
    M: int, nbar=4, sll=30, norm=True, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
129 130 131 132 133
    """Compute a Taylor window.
    The Taylor window taper function approximates the Dolph-Chebyshev window's
    constant sidelobe level for a parameterized number of near-in sidelobes.
    """
    if _len_guards(M):
134
        return paddle.ones((M,), dtype=dtype)
135 136 137 138
    M, needs_trunc = _extend(M, sym)
    # Original text uses a negative sidelobe level parameter and then negates
    # it in the calculation of B. To keep consistent with other methods we
    # assume the sidelobe level parameter to be positive.
139
    B = 10 ** (sll / 20)
140
    A = _acosh(B) / math.pi
141
    s2 = nbar**2 / (A**2 + (nbar - 0.5) ** 2)
142 143
    ma = paddle.arange(1, nbar, dtype=dtype)

144
    Fm = paddle.empty((nbar - 1,), dtype=dtype)
145 146 147 148 149
    signs = paddle.empty_like(ma)
    signs[::2] = 1
    signs[1::2] = -1
    m2 = ma * ma
    for mi in range(len(ma)):
150 151 152
        numer = signs[mi] * paddle.prod(
            1 - m2[mi] / s2 / (A**2 + (ma - 0.5) ** 2)
        )
153
        if mi == 0:
154
            denom = 2 * paddle.prod(1 - m2[mi] / m2[mi + 1 :])
155 156 157
        elif mi == len(ma) - 1:
            denom = 2 * paddle.prod(1 - m2[mi] / m2[:mi])
        else:
158 159 160 161 162
            denom = (
                2
                * paddle.prod(1 - m2[mi] / m2[:mi])
                * paddle.prod(1 - m2[mi] / m2[mi + 1 :])
            )
163 164 165 166 167 168

        Fm[mi] = numer / denom

    def W(n):
        return 1 + 2 * paddle.matmul(
            Fm.unsqueeze(0),
169 170
            paddle.cos(2 * math.pi * ma.unsqueeze(1) * (n - M / 2.0 + 0.5) / M),
        )
171 172 173 174 175 176 177 178 179 180 181

    w = W(paddle.arange(0, M, dtype=dtype))

    # normalize (Note that this is not described in the original text [1])
    if norm:
        scale = 1.0 / W((M - 1) / 2)
        w *= scale
    w = w.squeeze()
    return _truncate(w, needs_trunc)


182
@window_function_register.register()
183 184 185 186 187 188 189 190
def _hamming(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Hamming window.
    The Hamming window is a taper formed by using a raised cosine with
    non-zero endpoints, optimized to minimize the nearest side lobe.
    """
    return _general_hamming(M, 0.54, sym, dtype=dtype)


191
@window_function_register.register()
192 193 194 195 196 197 198 199
def _hann(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Hann window.
    The Hann window is a taper formed by using a raised cosine or sine-squared
    with ends that touch zero.
    """
    return _general_hamming(M, 0.5, sym, dtype=dtype)


200 201 202 203
@window_function_register.register()
def _tukey(
    M: int, alpha=0.5, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
204 205 206 207
    """Compute a Tukey window.
    The Tukey window is also known as a tapered cosine window.
    """
    if _len_guards(M):
208
        return paddle.ones((M,), dtype=dtype)
209 210

    if alpha <= 0:
211
        return paddle.ones((M,), dtype=dtype)
212 213 214 215 216 217 218
    elif alpha >= 1.0:
        return hann(M, sym=sym)

    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype)
    width = int(alpha * (M - 1) / 2.0)
219 220 221
    n1 = n[0 : width + 1]
    n2 = n[width + 1 : M - width - 1]
    n3 = n[M - width - 1 :]
222 223 224

    w1 = 0.5 * (1 + paddle.cos(math.pi * (-1 + 2.0 * n1 / alpha / (M - 1))))
    w2 = paddle.ones(n2.shape, dtype=dtype)
225 226 227 228
    w3 = 0.5 * (
        1
        + paddle.cos(math.pi * (-2.0 / alpha + 1 + 2.0 * n3 / alpha / (M - 1)))
    )
229 230 231 232 233
    w = paddle.concat([w1, w2, w3])

    return _truncate(w, needs_trunc)


234 235 236 237
@window_function_register.register()
def _kaiser(
    M: int, beta: float, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
238 239 240 241 242 243
    """Compute a Kaiser window.
    The Kaiser window is a taper formed by using a Bessel function.
    """
    raise NotImplementedError()


244 245 246 247
@window_function_register.register()
def _gaussian(
    M: int, std: float, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
248 249 250 251
    """Compute a Gaussian window.
    The Gaussian widows has a Gaussian shape defined by the standard deviation(std).
    """
    if _len_guards(M):
252
        return paddle.ones((M,), dtype=dtype)
253 254 255 256
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0
    sig2 = 2 * std * std
257
    w = paddle.exp(-(n**2) / sig2)
258 259 260 261

    return _truncate(w, needs_trunc)


262 263 264 265 266
@window_function_register.register()
def _exponential(
    M: int, center=None, tau=1.0, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
    """Compute an exponential (or Poisson) window."""
267 268 269
    if sym and center is not None:
        raise ValueError("If sym==True, center must be None.")
    if _len_guards(M):
270
        return paddle.ones((M,), dtype=dtype)
271 272 273 274 275 276 277 278 279 280 281
    M, needs_trunc = _extend(M, sym)

    if center is None:
        center = (M - 1) / 2

    n = paddle.arange(0, M, dtype=dtype)
    w = paddle.exp(-paddle.abs(n - center) / tau)

    return _truncate(w, needs_trunc)


282
@window_function_register.register()
283
def _triang(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
284
    """Compute a triangular window."""
285
    if _len_guards(M):
286
        return paddle.ones((M,), dtype=dtype)
287 288 289 290 291 292 293 294 295 296 297 298 299
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(1, (M + 1) // 2 + 1, dtype=dtype)
    if M % 2 == 0:
        w = (2 * n - 1.0) / M
        w = paddle.concat([w, w[::-1]])
    else:
        w = 2 * n / (M + 1.0)
        w = paddle.concat([w, w[-2::-1]])

    return _truncate(w, needs_trunc)


300
@window_function_register.register()
301 302 303 304 305
def _bohman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Bohman window.
    The Bohman window is the autocorrelation of a cosine window.
    """
    if _len_guards(M):
306
        return paddle.ones((M,), dtype=dtype)
307 308 309 310
    M, needs_trunc = _extend(M, sym)

    fac = paddle.abs(paddle.linspace(-1, 1, M, dtype=dtype)[1:-1])
    w = (1 - fac) * paddle.cos(math.pi * fac) + 1.0 / math.pi * paddle.sin(
311 312
        math.pi * fac
    )
313 314 315 316 317
    w = _cat([0, w, 0], dtype)

    return _truncate(w, needs_trunc)


318
@window_function_register.register()
319 320 321 322 323 324 325 326 327 328
def _blackman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Blackman window.
    The Blackman window is a taper formed by using the first three terms of
    a summation of cosines. It was designed to have close to the minimal
    leakage possible.  It is close to optimal, only slightly worse than a
    Kaiser window.
    """
    return _general_cosine(M, [0.42, 0.50, 0.08], sym, dtype=dtype)


329
@window_function_register.register()
330
def _cosine(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
331
    """Compute a window with a simple cosine shape."""
332
    if _len_guards(M):
333
        return paddle.ones((M,), dtype=dtype)
334
    M, needs_trunc = _extend(M, sym)
335
    w = paddle.sin(math.pi / M * (paddle.arange(0, M, dtype=dtype) + 0.5))
336 337 338 339

    return _truncate(w, needs_trunc)


340 341 342 343 344 345
def get_window(
    window: Union[str, Tuple[str, float]],
    win_length: int,
    fftbins: bool = True,
    dtype: str = 'float64',
) -> Tensor:
346 347 348
    """Return a window of a given length and type.

    Args:
349
        window (Union[str, Tuple[str, float]]): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'general_gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'.
350 351 352 353 354 355
        win_length (int): Number of samples.
        fftbins (bool, optional): If True, create a "periodic" window. Otherwise, create a "symmetric" window, for use in filter design. Defaults to True.
        dtype (str, optional): The data type of the return window. Defaults to 'float64'.

    Returns:
        Tensor: The window represented as a tensor.
356 357 358 359 360 361 362 363 364 365 366

    Examples:
        .. code-block:: python

            import paddle

            n_fft = 512
            cosine_window = paddle.audio.functional.get_window('cosine', n_fft)

            std = 7
            gussian_window = paddle.audio.functional.get_window(('gaussian',std), n_fft)
367 368 369 370 371 372 373 374 375 376
    """
    sym = not fftbins

    args = ()
    if isinstance(window, tuple):
        winstr = window[0]
        if len(window) > 1:
            args = window[1:]
    elif isinstance(window, str):
        if window in ['gaussian', 'exponential']:
377 378 379 380
            raise ValueError(
                "The '" + window + "' window needs one or "
                "more parameters -- pass a tuple."
            )
381 382 383
        else:
            winstr = window
    else:
384 385 386
        raise ValueError(
            "%s as window type is not supported." % str(type(window))
        )
387 388

    try:
389 390
        winfunc = window_function_register.get('_' + winstr)
    except KeyError as e:
391 392
        raise ValueError("Unknown window type.") from e

393
    params = (win_length,) + args
394 395
    kwargs = {'sym': sym}
    return winfunc(*params, dtype=dtype, **kwargs)