window.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import math
from typing import List
from typing import Tuple
from typing import Union

import paddle
from paddle import Tensor


def _cat(x: List[Tensor], data_type: str) -> Tensor:
    l = [paddle.to_tensor(_, data_type) for _ in x]
    return paddle.concat(l)


def _acosh(x: Union[Tensor, float]) -> Tensor:
    if isinstance(x, float):
        return math.log(x + math.sqrt(x**2 - 1))
    return paddle.log(x + paddle.sqrt(paddle.square(x) - 1))


def _extend(M: int, sym: bool) -> bool:
    """Extend window by 1 sample if needed for DFT-even symmetry. """
    if not sym:
        return M + 1, True
    else:
        return M, False


def _len_guards(M: int) -> bool:
    """Handle small or incorrect window lengths. """
    if int(M) != M or M < 0:
        raise ValueError('Window length M must be a non-negative integer')

    return M <= 1


def _truncate(w: Tensor, needed: bool) -> Tensor:
    """Truncate window by 1 sample if needed for DFT-even symmetry. """
    if needed:
        return w[:-1]
    else:
        return w


def _general_gaussian(M: int,
                      p,
                      sig,
                      sym: bool = True,
                      dtype: str = 'float64') -> Tensor:
    """Compute a window with a generalized Gaussian shape.
    This function is consistent with scipy.signal.windows.general_gaussian().
    """
    if _len_guards(M):
        return paddle.ones((M, ), dtype=dtype)
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0
    w = paddle.exp(-0.5 * paddle.abs(n / sig)**(2 * p))

    return _truncate(w, needs_trunc)


def _general_cosine(M: int,
                    a: float,
                    sym: bool = True,
                    dtype: str = 'float64') -> Tensor:
    """Compute a generic weighted sum of cosine terms window.
    This function is consistent with scipy.signal.windows.general_cosine().
    """
    if _len_guards(M):
        return paddle.ones((M, ), dtype=dtype)
    M, needs_trunc = _extend(M, sym)
    fac = paddle.linspace(-math.pi, math.pi, M, dtype=dtype)
    w = paddle.zeros((M, ), dtype=dtype)
    for k in range(len(a)):
        w += a[k] * paddle.cos(k * fac)
    return _truncate(w, needs_trunc)


def _general_hamming(M: int,
                     alpha: float,
                     sym: bool = True,
                     dtype: str = 'float64') -> Tensor:
    """Compute a generalized Hamming window.
    This function is consistent with scipy.signal.windows.general_hamming()
    """
    return _general_cosine(M, [alpha, 1. - alpha], sym, dtype=dtype)


def _taylor(M: int,
            nbar=4,
            sll=30,
            norm=True,
            sym: bool = True,
            dtype: str = 'float64') -> Tensor:
    """Compute a Taylor window.
    The Taylor window taper function approximates the Dolph-Chebyshev window's
    constant sidelobe level for a parameterized number of near-in sidelobes.
    """
    if _len_guards(M):
        return paddle.ones((M, ), dtype=dtype)
    M, needs_trunc = _extend(M, sym)
    # Original text uses a negative sidelobe level parameter and then negates
    # it in the calculation of B. To keep consistent with other methods we
    # assume the sidelobe level parameter to be positive.
    B = 10**(sll / 20)
    A = _acosh(B) / math.pi
    s2 = nbar**2 / (A**2 + (nbar - 0.5)**2)
    ma = paddle.arange(1, nbar, dtype=dtype)

    Fm = paddle.empty((nbar - 1, ), dtype=dtype)
    signs = paddle.empty_like(ma)
    signs[::2] = 1
    signs[1::2] = -1
    m2 = ma * ma
    for mi in range(len(ma)):
        numer = signs[mi] * paddle.prod(1 - m2[mi] / s2 / (A**2 +
                                                           (ma - 0.5)**2))
        if mi == 0:
            denom = 2 * paddle.prod(1 - m2[mi] / m2[mi + 1:])
        elif mi == len(ma) - 1:
            denom = 2 * paddle.prod(1 - m2[mi] / m2[:mi])
        else:
            denom = 2 * paddle.prod(1 - m2[mi] / m2[:mi]) * paddle.prod(
                1 - m2[mi] / m2[mi + 1:])

        Fm[mi] = numer / denom

    def W(n):
        return 1 + 2 * paddle.matmul(
            Fm.unsqueeze(0),
            paddle.cos(2 * math.pi * ma.unsqueeze(1) * (n - M / 2. + 0.5) / M))

    w = W(paddle.arange(0, M, dtype=dtype))

    # normalize (Note that this is not described in the original text [1])
    if norm:
        scale = 1.0 / W((M - 1) / 2)
        w *= scale
    w = w.squeeze()
    return _truncate(w, needs_trunc)


def _hamming(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Hamming window.
    The Hamming window is a taper formed by using a raised cosine with
    non-zero endpoints, optimized to minimize the nearest side lobe.
    """
    return _general_hamming(M, 0.54, sym, dtype=dtype)


def _hann(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Hann window.
    The Hann window is a taper formed by using a raised cosine or sine-squared
    with ends that touch zero.
    """
    return _general_hamming(M, 0.5, sym, dtype=dtype)


def _tukey(M: int,
           alpha=0.5,
           sym: bool = True,
           dtype: str = 'float64') -> Tensor:
    """Compute a Tukey window.
    The Tukey window is also known as a tapered cosine window.
    """
    if _len_guards(M):
        return paddle.ones((M, ), dtype=dtype)

    if alpha <= 0:
        return paddle.ones((M, ), dtype=dtype)
    elif alpha >= 1.0:
        return hann(M, sym=sym)

    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype)
    width = int(alpha * (M - 1) / 2.0)
    n1 = n[0:width + 1]
    n2 = n[width + 1:M - width - 1]
    n3 = n[M - width - 1:]

    w1 = 0.5 * (1 + paddle.cos(math.pi * (-1 + 2.0 * n1 / alpha / (M - 1))))
    w2 = paddle.ones(n2.shape, dtype=dtype)
    w3 = 0.5 * (1 + paddle.cos(math.pi * (-2.0 / alpha + 1 + 2.0 * n3 / alpha /
                                          (M - 1))))
    w = paddle.concat([w1, w2, w3])

    return _truncate(w, needs_trunc)


def _kaiser(M: int,
            beta: float,
            sym: bool = True,
            dtype: str = 'float64') -> Tensor:
    """Compute a Kaiser window.
    The Kaiser window is a taper formed by using a Bessel function.
    """
    raise NotImplementedError()


def _gaussian(M: int,
              std: float,
              sym: bool = True,
              dtype: str = 'float64') -> Tensor:
    """Compute a Gaussian window.
    The Gaussian widows has a Gaussian shape defined by the standard deviation(std).
    """
    if _len_guards(M):
        return paddle.ones((M, ), dtype=dtype)
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0
    sig2 = 2 * std * std
    w = paddle.exp(-n**2 / sig2)

    return _truncate(w, needs_trunc)


def _exponential(M: int,
                 center=None,
                 tau=1.,
                 sym: bool = True,
                 dtype: str = 'float64') -> Tensor:
    """Compute an exponential (or Poisson) window. """
    if sym and center is not None:
        raise ValueError("If sym==True, center must be None.")
    if _len_guards(M):
        return paddle.ones((M, ), dtype=dtype)
    M, needs_trunc = _extend(M, sym)

    if center is None:
        center = (M - 1) / 2

    n = paddle.arange(0, M, dtype=dtype)
    w = paddle.exp(-paddle.abs(n - center) / tau)

    return _truncate(w, needs_trunc)


def _triang(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a triangular window.
    """
    if _len_guards(M):
        return paddle.ones((M, ), dtype=dtype)
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(1, (M + 1) // 2 + 1, dtype=dtype)
    if M % 2 == 0:
        w = (2 * n - 1.0) / M
        w = paddle.concat([w, w[::-1]])
    else:
        w = 2 * n / (M + 1.0)
        w = paddle.concat([w, w[-2::-1]])

    return _truncate(w, needs_trunc)


def _bohman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Bohman window.
    The Bohman window is the autocorrelation of a cosine window.
    """
    if _len_guards(M):
        return paddle.ones((M, ), dtype=dtype)
    M, needs_trunc = _extend(M, sym)

    fac = paddle.abs(paddle.linspace(-1, 1, M, dtype=dtype)[1:-1])
    w = (1 - fac) * paddle.cos(math.pi * fac) + 1.0 / math.pi * paddle.sin(
        math.pi * fac)
    w = _cat([0, w, 0], dtype)

    return _truncate(w, needs_trunc)


def _blackman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Blackman window.
    The Blackman window is a taper formed by using the first three terms of
    a summation of cosines. It was designed to have close to the minimal
    leakage possible.  It is close to optimal, only slightly worse than a
    Kaiser window.
    """
    return _general_cosine(M, [0.42, 0.50, 0.08], sym, dtype=dtype)


def _cosine(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a window with a simple cosine shape.
    """
    if _len_guards(M):
        return paddle.ones((M, ), dtype=dtype)
    M, needs_trunc = _extend(M, sym)
    w = paddle.sin(math.pi / M * (paddle.arange(0, M, dtype=dtype) + .5))

    return _truncate(w, needs_trunc)


def get_window(window: Union[str, Tuple[str, float]],
               win_length: int,
               fftbins: bool = True,
               dtype: str = 'float64') -> Tensor:
    """Return a window of a given length and type.

    Args:
        window (Union[str, Tuple[str, float]]): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'.
        win_length (int): Number of samples.
        fftbins (bool, optional): If True, create a "periodic" window. Otherwise, create a "symmetric" window, for use in filter design. Defaults to True.
        dtype (str, optional): The data type of the return window. Defaults to 'float64'.

    Returns:
        Tensor: The window represented as a tensor.
322 323 324 325 326 327 328 329 330 331 332

    Examples:
        .. code-block:: python

            import paddle

            n_fft = 512
            cosine_window = paddle.audio.functional.get_window('cosine', n_fft)

            std = 7
            gussian_window = paddle.audio.functional.get_window(('gaussian',std), n_fft)
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    """
    sym = not fftbins

    args = ()
    if isinstance(window, tuple):
        winstr = window[0]
        if len(window) > 1:
            args = window[1:]
    elif isinstance(window, str):
        if window in ['gaussian', 'exponential']:
            raise ValueError("The '" + window + "' window needs one or "
                             "more parameters -- pass a tuple.")
        else:
            winstr = window
    else:
        raise ValueError("%s as window type is not supported." %
                         str(type(window)))

    try:
        winfunc = eval('_' + winstr)
    except NameError as e:
        raise ValueError("Unknown window type.") from e

    params = (win_length, ) + args
    kwargs = {'sym': sym}
    return winfunc(*params, dtype=dtype, **kwargs)