config_parser.py 121.2 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''

import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
103
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
104 105 106
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
107
print = logger.info
Z
zhangjinchao01 已提交
108 109 110 111

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
112

Z
zhangjinchao01 已提交
113 114 115
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140 141
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
158

Z
zhangjinchao01 已提交
159 160
g_config_funcs = {}

Q
qijun 已提交
161

Z
zhangjinchao01 已提交
162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
167

Z
zhangjinchao01 已提交
168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
173

Z
zhangjinchao01 已提交
174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182
    return wrap

Q
qijun 已提交
183

Z
zhangjinchao01 已提交
184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
191

Z
zhangjinchao01 已提交
192 193 194
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
195

Z
zhangjinchao01 已提交
196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204
# functions available in config file

Q
qijun 已提交
205

Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
263

Z
zhangjinchao01 已提交
264
@config_func
Q
qijun 已提交
265
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
269
    if name is not None:
Q
qijun 已提交
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
273 274 275

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
276

Z
zhangjinchao01 已提交
277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
281 282
    return name + suffix

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
289 290
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
298

Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
331
    g_current_submodel.target_inlinkid = -1
Z
zhangjinchao01 已提交
332
    in_links_count = 0
333
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
334 335 336 337 338 339
        if isinstance(link, basestring):
            name = link
            has_subseq = False
        else:
            name = link.link_name
            has_subseq = link.has_subseq
340 341 342 343
        # assign target_inlinkid according to target_inlinkname
        if target_inlinkname == name:
            g_current_submodel.target_inlinkid = linkid

Z
zhangjinchao01 已提交
344 345 346
        if in_links_count == 0:
            in_links_has_subseq = has_subseq
        else:
Q
qijun 已提交
347 348 349 350
            config_assert(
                in_links_has_subseq == has_subseq,
                "The sequence type of in_links should be the same in RecurrentLayerGroup"
            )
Z
zhangjinchao01 已提交
351 352 353 354 355 356 357
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
        if has_subseq:
            SequenceScatterAgentLayer(name=name, size=layer.size)
        else:
            ScatterAgentLayer(name=name, size=layer.size)
358

Z
zhangjinchao01 已提交
359 360 361 362 363
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)
        pair.has_subseq = has_subseq

Q
qijun 已提交
364

Z
zhangjinchao01 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
        has_subseq = False
    else:
        name = link.link_name
        has_subseq = link.has_subseq
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name
    pair.has_subseq = has_subseq


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
381
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
382 383 384 385 386 387 388 389
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
390
                             target_inlinkname="",
Z
zhangjinchao01 已提交
391
                             seq_reversed=False):
Q
qijun 已提交
392
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed,
393
                                            target_inlinkname)
Z
zhangjinchao01 已提交
394 395 396 397 398
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
399 400 401 402 403
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
404 405 406 407 408 409 410


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
411
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
412
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
413 414
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        elif pair.has_subseq:
            SequenceGatherAgentLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
433

Z
zhangjinchao01 已提交
434 435 436 437 438 439
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
440

Z
zhangjinchao01 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
@config_class
class Bias(Cfg):
    def __init__(
            self,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            gradient_clipping_threshold=None,
            is_static=None,
Q
qijun 已提交
458
            is_shared=None, ):
Z
zhangjinchao01 已提交
459 460
        self.add_keys(locals())

Q
qijun 已提交
461

Z
zhangjinchao01 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
482
            bilinear_interp=None,
Z
zhangjinchao01 已提交
483 484 485 486
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
487
            maxout=None,
Q
qijun 已提交
488
            spp=None,
Z
zhangjinchao01 已提交
489 490 491 492 493
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
494
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
495 496 497
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

Q
qijun 已提交
498

Z
zhangjinchao01 已提交
499 500 501
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
502 503
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
504 505 506
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
507
            size=0,  # projection output size
Z
zhangjinchao01 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
527
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
541

Z
zhangjinchao01 已提交
542 543
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
544

Z
zhangjinchao01 已提交
545 546 547 548 549 550 551 552 553 554
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
555

Z
zhangjinchao01 已提交
556 557
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
558

Z
zhangjinchao01 已提交
559 560 561
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
562

Z
zhangjinchao01 已提交
563 564 565 566 567 568
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
569 570 571
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
572 573 574 575
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
576

Z
zhangjinchao01 已提交
577 578 579
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
580

Z
zhangjinchao01 已提交
581 582 583 584 585 586 587
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
588

Z
zhangjinchao01 已提交
589 590
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
591

Z
zhangjinchao01 已提交
592 593 594
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

D
dangqingqing 已提交
595

X
xuwei06 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
610

Z
zhangjinchao01 已提交
611 612 613 614 615 616
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
617

Z
zhangjinchao01 已提交
618 619 620
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
621

Z
zhangjinchao01 已提交
622 623 624 625 626 627
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
628

Z
zhangjinchao01 已提交
629 630 631
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
632

Z
zhangjinchao01 已提交
633 634 635 636 637 638
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
639

Z
zhangjinchao01 已提交
640 641 642
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
643

Z
zhangjinchao01 已提交
644 645 646 647
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
648 649
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


673 674 675 676
@config_class
class ConvProjection(Projection):
    type = 'conv'

Q
qijun 已提交
677 678 679 680 681
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
682 683 684 685 686
        super(ConvProjection, self).__init__(input_layer_name, **xargs)

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

Q
qijun 已提交
687
        parse_conv(conv_conf, input_layer_name, self.proj_conf.conv_conf,
688
                   num_filters)
689
        # TODO: support rectangle input
Y
Yu Yang 已提交
690 691
        self.proj_conf.output_size = (self.proj_conf.conv_conf.output_x
                                      **2) * num_filters
692 693 694 695 696 697 698 699 700

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
701 702
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
703 704 705 706 707 708 709

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
710

Z
zhangjinchao01 已提交
711 712 713
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
714 715
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
716 717
    def __init__(
            self,
Q
qijun 已提交
718
            input_layer_names, ):
Z
zhangjinchao01 已提交
719 720 721 722 723 724 725 726 727 728
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
729

Z
zhangjinchao01 已提交
730 731 732
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
733 734 735

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
754 755 756 757 758 759 760

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
761 762 763
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

764 765
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
766 767 768
                   self.operator_conf.conv_conf, num_filters)
        self.operator_conf.output_size = (self.operator_conf.conv_conf.output_x
                                          **2) * num_filters
Z
zhangjinchao01 已提交
769 770 771

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

772 773
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
774 775 776 777 778


# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None):
Z
zhangjinchao01 已提交
792 793
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
794
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
795
        if padding_y is None:
Q
qijun 已提交
796
            self.padding_y = padding
Z
zhangjinchao01 已提交
797
        if stride_y is None:
Q
qijun 已提交
798
            self.stride_y = stride
Z
zhangjinchao01 已提交
799
        if output_x is not None:
Q
qijun 已提交
800 801
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
802

L
liaogang 已提交
803 804 805
# please refer to the comments in proto/ModelConfig.proto
@config_class
class BilinearInterp(Cfg):
Q
qijun 已提交
806
    def __init__(self, out_size_x=None, out_size_y=None, num_channels=None):
L
liaogang 已提交
807 808
        self.add_keys(locals())

Q
qijun 已提交
809

Z
zhangjinchao01 已提交
810 811 812
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
813 814 815 816 817 818 819 820 821 822 823 824
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            img_width=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
825
        self.add_keys(locals())
Q
qijun 已提交
826 827


Q
qijun 已提交
828 829
# please refer to the comments in proto/ModelConfig.proto
@config_class
Q
qijun 已提交
830
class SpatialPyramidPool(Cfg):
Q
qijun 已提交
831
    def __init__(self, pool_type, pyramid_height, channels, img_width=None):
Q
qijun 已提交
832
        self.add_keys(locals())
Z
zhangjinchao01 已提交
833

Q
qijun 已提交
834

Z
zhangjinchao01 已提交
835 836 837
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Norm(Cfg):
Q
qijun 已提交
838 839 840 841 842 843 844 845 846
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
847 848
        self.add_keys(locals())

Q
qijun 已提交
849

Z
zhangjinchao01 已提交
850 851 852
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Image(Cfg):
Q
qijun 已提交
853
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
854 855
        self.add_keys(locals())

Q
qijun 已提交
856

Z
zhangjinchao01 已提交
857 858
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
859 860 861 862 863 864 865 866 867 868 869 870
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
871 872
        self.add_keys(locals())

Q
qijun 已提交
873

874 875
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
876
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
877 878
        self.add_keys(locals())

Q
qijun 已提交
879

Z
zhangjinchao01 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892
def DataBase(async_load_data=False,
             constant_slots=None,
             data_ratio=1,
             is_main_data=True,
             usage_ratio=None):
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
893 894
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
895

Q
qijun 已提交
896
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
897 898 899 900 901 902
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
903

Z
zhangjinchao01 已提交
904
@config_func
Q
qijun 已提交
905 906 907 908 909
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
Z
zhangjinchao01 已提交
910 911 912 913 914 915 916 917 918 919
    data_config = DataBase(**xargs)
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
920

Z
zhangjinchao01 已提交
921
@config_func
Q
qijun 已提交
922 923 924 925 926 927 928 929 930 931
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
Z
zhangjinchao01 已提交
932 933 934
    data_config = DataBase(**xargs)
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
935

Z
zhangjinchao01 已提交
936 937 938
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
939

Z
zhangjinchao01 已提交
940 941 942
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
943 944
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
945
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
946 947 948 949
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
974

Z
zhangjinchao01 已提交
975
@config_func
Q
qijun 已提交
976 977 978 979 980 981 982
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
Z
zhangjinchao01 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
    data_config = DataBase(**xargs)
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1003

Z
zhangjinchao01 已提交
1004 1005
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1006
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1007 1008 1009 1010 1011
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1012

Z
zhangjinchao01 已提交
1013
@config_func
Q
qijun 已提交
1014 1015 1016 1017 1018 1019 1020
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

    data_config = DataBase(**xargs)
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1056

L
liaogang 已提交
1057
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
Q
qijun 已提交
1058 1059 1060 1061
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y
    bilinear_conf.num_channels = bilinear.num_channels

L
liaogang 已提交
1062

1063 1064 1065 1066
'''
caffe_mode: compute the output size using floor instead of ceil,
            which is consistent of caffe and CuDNN's convention.
'''
Q
qijun 已提交
1067 1068


1069 1070 1071 1072 1073 1074 1075
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1076

1077 1078 1079 1080
'''
calcualte image_size based on output_size for convolution. 
It is the reverse function of cnn_output_size
'''
Q
qijun 已提交
1081 1082


1083 1084 1085 1086
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
    if caffe_mode:
        img_size = (output_size - 1) * stride + filter_size - 2 * padding
    else:
Q
qijun 已提交
1087
        img_size = (output_size - 2) * stride + filter_size - 2 * padding + 1
1088 1089
    return img_size

Q
qijun 已提交
1090

Z
zhangjinchao01 已提交
1091 1092
def parse_pool(pool, input_layer_name, pool_conf):
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1093 1094 1095
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
Z
zhangjinchao01 已提交
1096
                  "['max-projection', 'avg-projection', "
Q
qijun 已提交
1097
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1098 1099 1100 1101 1102 1103

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1104
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1105 1106

    img_pixels = g_layer_map[input_layer_name].size / pool.channels
1107 1108
    # the img_width may be removed,
    # and it can be calculated automatically later.
Q
qijun 已提交
1109
    pool_conf.img_size = default(pool.img_width, int(img_pixels**0.5))
Z
zhangjinchao01 已提交
1110 1111
    pool_conf.img_size_y = img_pixels / pool_conf.img_size
    config_assert(pool_conf.img_size * pool_conf.img_size_y == img_pixels,
Q
qijun 已提交
1112 1113
                  "Incorrect input image size %d for input image pixels %d" %
                  (pool_conf.img_size, img_pixels))
Z
zhangjinchao01 已提交
1114

1115
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1116

1117
    if pool.padding is not None:
D
dangqingqing 已提交
1118
        pool_conf.padding = pool.padding
1119
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1120 1121 1122 1123 1124 1125
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
                                         False)
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
                                         pool_conf.stride_y, False)
Q
qijun 已提交
1126

Z
zhangjinchao01 已提交
1127

Q
qijun 已提交
1128 1129 1130
def parse_spp(spp, input_layer_name, spp_conf):
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1131 1132
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1133 1134 1135 1136 1137
    spp_conf.pyramid_height = spp.pyramid_height
    spp_conf.channels = spp.channels

    img_pixels = g_layer_map[input_layer_name].size / spp_conf.channels

Q
qijun 已提交
1138
    spp_conf.img_size = default(spp.img_width, int(img_pixels**0.5))
Q
qijun 已提交
1139 1140
    spp_conf.img_size_y = img_pixels / spp_conf.img_size
    config_assert(spp_conf.img_size * spp_conf.img_size_y == img_pixels,
Q
qijun 已提交
1141 1142 1143
                  "Incorrect input image size %d for input image pixels %d" %
                  (spp_conf.img_size, img_pixels))

Q
qijun 已提交
1144

Z
zhangjinchao01 已提交
1145 1146 1147
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
    image_pixels = g_layer_map[input_layer_name].size / image_conf.channels
Q
qijun 已提交
1148 1149 1150 1151 1152
    image_conf.img_size = int(image_pixels**0.5)
    config_assert((image_conf.img_size**2) == image_pixels,
                  "Incorrect input image size %d for input image pixels %d" %
                  (image_conf.img_size, image_pixels))

Z
zhangjinchao01 已提交
1153 1154 1155 1156

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
    config_assert(norm.norm_type in ['rnorm', 'cmrnorm-projection'],
Q
qijun 已提交
1157 1158
                  "norm-type %s is not in [rnorm, 'cmrnorm-projection']" %
                  norm.norm_type)
Z
zhangjinchao01 已提交
1159 1160 1161 1162 1163 1164 1165
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

    img_pixels = g_layer_map[input_layer_name].size / norm.channels
Q
qijun 已提交
1166 1167 1168 1169
    norm_conf.img_size = int(img_pixels**0.5)
    config_assert((norm_conf.img_size**2) == img_pixels,
                  "Incorrect input image size %d for input image pixels %d" %
                  (norm_conf.img_size, img_pixels))
Z
zhangjinchao01 已提交
1170 1171 1172 1173
    norm_conf.output_x = norm_conf.img_size
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1174 1175
        norm_conf.scale /= norm.size**2

1176

1177 1178 1179 1180
'''
caffe_mode: compute the output size using floor instead of ceil,
            which is consistent of caffe and CuDNN's convention.
'''
Q
qijun 已提交
1181 1182


1183
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
Q
qijun 已提交
1193

1194
    if not trans:
1195 1196
        conv_conf.filter_channels = conv.channels / conv.groups

1197
        img_pixels = g_layer_map[input_layer_name].size / conv.channels
Q
qijun 已提交
1198 1199 1200 1201 1202 1203 1204 1205
        print('channels=%d size=%d' % (conv.channels,
                                       g_layer_map[input_layer_name].size))
        conv_conf.img_size = int(img_pixels**0.5)
        config_assert((conv_conf.img_size**2) == img_pixels, (
            "Input layer %s: Incorrect input image size %d for input " +
            "image pixels %d") %
                      (input_layer_name, conv_conf.img_size, img_pixels))

1206
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1207 1208
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
1209
    else:
1210
        conv_conf.filter_channels = num_filters / conv.groups
Q
qijun 已提交
1211

1212
        outputSize = g_layer_map[input_layer_name].size / conv.channels
Q
qijun 已提交
1213 1214 1215 1216 1217 1218 1219
        print('channels=%d size=%d' % (conv.channels,
                                       g_layer_map[input_layer_name].size))
        conv_conf.output_x = int(outputSize**0.5)
        config_assert((conv_conf.output_x**2) == outputSize, (
            "Input layer %s: Incorrect input image size %d for input " +
            "image pixels %d") %
                      (input_layer_name, conv_conf.output_x, outputSize))
1220
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1221 1222 1223
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)

1224

Z
zhangjinchao01 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1238
        block_expand_conf.output_x = cnn_output_size(
1239
            block_expand.img_size_x, block_expand.block_x,
1240
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1241 1242

    if block_expand_conf.img_size_y == 0:
1243
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1244
    else:
1245
        block_expand_conf.output_y = cnn_output_size(
1246
            block_expand.img_size_y, block_expand.block_y,
1247
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1248

Q
qijun 已提交
1249

1250 1251 1252 1253 1254
def parse_maxout(maxout, input_layer_name, maxout_conf):
    maxout_conf.channels = maxout.channels
    maxout_conf.groups = maxout.groups
    maxout_conf.img_size_x = maxout.img_size_x
    maxout_conf.img_size_y = maxout.img_size_y
1255

Q
qijun 已提交
1256

Z
zhangjinchao01 已提交
1257 1258 1259 1260 1261 1262
# Define an evaluator
@config_func
def Evaluator(
        name,
        type,
        inputs,
Q
qijun 已提交
1263 1264 1265 1266 1267 1268 1269 1270
        chunk_scheme=None,
        num_chunk_types=None,
        classification_threshold=None,
        positive_label=None,
        dict_file=None,
        result_file=None,
        num_results=None,
        delimited=None, ):
Z
zhangjinchao01 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1298

Q
qijun 已提交
1299

Z
zhangjinchao01 已提交
1300 1301 1302 1303 1304
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1305
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1306 1307 1308 1309
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
1310
            coeff=None):
Z
zhangjinchao01 已提交
1311
        config_assert('@' not in name,
Q
qijun 已提交
1312
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1328
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1329 1330 1331
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1332 1333
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1334 1335 1336 1337 1338 1339 1340
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1341
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350
            self.config.device = g_default_device

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1351 1352
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1353 1354 1355 1356 1357 1358 1359 1360
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1361
                self.operators.append(input)
Z
zhangjinchao01 已提交
1362 1363 1364 1365
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1366
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1367
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1368 1369
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1387
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1388
            size,
Q
qijun 已提交
1389 1390 1391
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1392 1393 1394 1395 1396 1397

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1398 1399 1400
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1410 1411
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1412 1413 1414
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1415 1416
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1428 1429
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1430
                    is_static=bias.is_static,
Q
qijun 已提交
1431
                    is_shared=bias.is_shared, )
Z
zhangjinchao01 已提交
1432 1433 1434 1435 1436
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1437 1438 1439 1440 1441 1442
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1457 1458
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1459 1460
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1461 1462
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1463 1464 1465 1466 1467 1468
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1469
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1482 1483
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1484 1485 1486 1487
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
Q
qijun 已提交
1488
            update_hooks=input_config.update_hooks)
Z
zhangjinchao01 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

Q
qijun 已提交
1498

Z
zhangjinchao01 已提交
1499 1500
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1501 1502 1503
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1504 1505
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1506

Z
zhangjinchao01 已提交
1507 1508
@config_layer('fc')
class FCLayer(LayerBase):
Q
qijun 已提交
1509
    def __init__(self, name, size, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
        super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"

            if sparse:
                psize = self.inputs[input_index].nnz
1520 1521
            else:
                sparse = None
Z
zhangjinchao01 已提交
1522

Q
qijun 已提交
1523 1524
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1525 1526
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1527

Z
zhangjinchao01 已提交
1528 1529
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1560 1561
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1574 1575
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1576 1577
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1578

1579 1580
@config_layer('print')
class PrintLayer(LayerBase):
Q
qijun 已提交
1581
    def __init__(self, name, inputs):
1582 1583
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)

Q
qijun 已提交
1584

Z
zhangjinchao01 已提交
1585 1586
@config_layer('data')
class DataLayer(LayerBase):
Q
qijun 已提交
1587 1588 1589 1590
    def __init__(self, name, size, device=None):
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
1618 1619


Z
zhangjinchao01 已提交
1620 1621
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
1622
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
1634

Z
zhangjinchao01 已提交
1635 1636 1637
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
1638 1639

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
1640 1641 1642 1643 1644 1645 1646 1647
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        config_assert(len(self.inputs) == 1)
        config_assert(self.input_layer.size % partial_sum == 0)
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
1648

Z
zhangjinchao01 已提交
1649 1650 1651
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
1652 1653 1654 1655 1656 1657 1658 1659

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
Q
qijun 已提交
1676
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
1688 1689
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       self.config.inputs[input_index].conv_conf, num_filters)
Z
zhangjinchao01 已提交
1690 1691 1692 1693 1694
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            print("output size for %s is %d " % (name, conv_conf.output_x))
            self.create_input_parameter(input_index, psize)
            self.set_layer_size(
Q
qijun 已提交
1695
                (conv_conf.output_x**2) * self.config.num_filters)
Z
zhangjinchao01 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1706

Z
zhangjinchao01 已提交
1707 1708 1709 1710
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
1711

Z
zhangjinchao01 已提交
1712 1713 1714 1715
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1716 1717 1718 1719

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
1720 1721 1722 1723 1724 1725 1726 1727

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1728
        super(ConvTransLayerBase, self).__init__(
1729 1730 1731 1732 1733 1734 1735 1736
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1737 1738
        # cudnn_convt has not been implemented so use exconvt only
        self.layer_type = "exconvt"
1739 1740 1741 1742 1743 1744 1745 1746
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1747
            parse_conv(
1748 1749
                self.inputs[input_index].conv,
                input_layer.name,
1750
                self.config.inputs[input_index].conv_conf,
1751
                num_filters,
1752
                trans=True)
1753 1754 1755 1756 1757
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            print("output size for %s is %d " % (name, conv_conf.output_x))
            self.create_input_parameter(input_index, psize)
            self.set_layer_size(
Q
qijun 已提交
1758
                (conv_conf.img_size**2) * self.config.num_filters)
1759 1760 1761 1762 1763 1764 1765

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1766
        return conv_conf.channels * conv_conf.filter_channels \
1767 1768
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1769

1770 1771 1772 1773
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
1774

Z
zhangjinchao01 已提交
1775 1776
@config_layer('norm')
class NormLayer(LayerBase):
Q
qijun 已提交
1777 1778 1779
    def __init__(self, name, inputs, device=None):
        super(NormLayer, self).__init__(
            name, 'norm', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
1780 1781
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
1782 1783
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       self.config.inputs[input_index].norm_conf)
Z
zhangjinchao01 已提交
1784
            norm_conf = self.config.inputs[input_index].norm_conf
Q
qijun 已提交
1785 1786
            self.set_layer_size((norm_conf.output_x**2) * norm_conf.channels)

Z
zhangjinchao01 已提交
1787 1788 1789

@config_layer('pool')
class PoolLayer(LayerBase):
Q
qijun 已提交
1790 1791 1792
    def __init__(self, name, inputs, device=None):
        super(PoolLayer, self).__init__(
            name, 'pool', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
1793 1794
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
1795 1796
            parse_pool(self.inputs[input_index].pool, input_layer.name,
                       self.config.inputs[input_index].pool_conf)
Z
zhangjinchao01 已提交
1797
            pool_conf = self.config.inputs[input_index].pool_conf
Q
qijun 已提交
1798 1799 1800 1801 1802
            print("output size for %s is %d*%d " % (name, pool_conf.output_y,
                                                    pool_conf.output_x))
            self.set_layer_size(
                (pool_conf.output_x * pool_conf.output_y) * pool_conf.channels)

Z
zhangjinchao01 已提交
1803

Q
qijun 已提交
1804 1805
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
Q
qijun 已提交
1806 1807 1808
    def __init__(self, name, inputs, device=None):
        super(SpatialPyramidPoolLayer, self).__init__(
            name, 'spp', 0, inputs=inputs, device=device)
Q
qijun 已提交
1809 1810
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
1811 1812
            parse_spp(self.inputs[input_index].spp, input_layer.name,
                      self.config.inputs[input_index].spp_conf)
Q
qijun 已提交
1813 1814 1815 1816 1817
            spp_conf = self.config.inputs[input_index].spp_conf
            output_size = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            print("output size for %s is %d " % (name, output_size))
            self.set_layer_size(output_size * spp_conf.channels)

Q
qijun 已提交
1818

Z
zhangjinchao01 已提交
1819 1820 1821
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

    def __init__(self,
                 name,
                 inputs,
                 active_type="linear",
                 bias=True,
                 device=None,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
Z
zhangjinchao01 已提交
1833 1834 1835 1836
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
1837 1838
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
1839 1840 1841 1842 1843 1844 1845 1846
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
1847 1848 1849 1850 1851 1852 1853
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
                    is_shared=is_shared, ))
Z
zhangjinchao01 已提交
1854 1855 1856 1857 1858 1859 1860

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
            ((not parallel_nn) or self.config.device > -1) and \
1861
            cudnn_version >= 4007
Z
zhangjinchao01 已提交
1862
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
Q
qijun 已提交
1863 1864 1865 1866 1867 1868 1869 1870
        super(BatchNormLayer, self).__init__(
            name,
            self.layer_type,
            0,
            active_type=active_type,
            inputs=inputs,
            device=device,
            **xargs)
Z
zhangjinchao01 已提交
1871 1872 1873 1874 1875 1876

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
1877 1878
        input_layer = self.get_input_layer(0)
        parse_image(self.inputs[0].image, input_layer.name,
Z
zhangjinchao01 已提交
1879 1880
                    self.config.inputs[0].image_conf)
        image_conf = self.config.inputs[0].image_conf
Q
qijun 已提交
1881
        self.set_layer_size((image_conf.img_size**2) * image_conf.channels)
Z
zhangjinchao01 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
1894

Z
zhangjinchao01 已提交
1895 1896
@config_layer('trans')
class TransLayer(LayerBase):
Q
qijun 已提交
1897 1898 1899 1900 1901 1902
    def __init__(self, name, inputs, device=None):
        super(TransLayer, self).__init__(
            name, 'trans', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
1903 1904
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
1905

Z
zhangjinchao01 已提交
1906 1907
@config_layer('resize')
class ResizeLayer(LayerBase):
Q
qijun 已提交
1908 1909 1910 1911 1912 1913 1914
    def __init__(self, name, size, inputs, device=None):
        super(ResizeLayer, self).__init__(
            name, 'resize', size=size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
1915 1916 1917

@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
Q
qijun 已提交
1918 1919 1920
    def __init__(self, name, inputs, device=None):
        super(BlockExpandLayer, self).__init__(
            name, 'blockexpand', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
1921 1922
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
1923 1924
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
1925
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
1926 1927 1928 1929 1930 1931
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
1932

1933 1934
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
1935 1936 1937
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
1938
        input_layer = self.get_input_layer(0)
Q
qijun 已提交
1939
        parse_maxout(self.inputs[0].maxout, input_layer.name,
1940 1941
                     self.config.inputs[0].maxout_conf)
        maxout_conf = self.config.inputs[0].maxout_conf
Q
qijun 已提交
1942 1943 1944
        self.set_layer_size(g_layer_map[input_layer.name].size /
                            maxout_conf.groups)

1945

Z
zhangjinchao01 已提交
1946 1947 1948 1949
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
1950

Z
zhangjinchao01 已提交
1951 1952 1953
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
1954 1955
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
1956

Q
qijun 已提交
1957
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
1958 1959 1960
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
1961

Z
zhangjinchao01 已提交
1962 1963 1964 1965 1966 1967 1968 1969
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
1970
define_cost('SumCost', 'sum_cost')
Z
zhangjinchao01 已提交
1971

Q
qijun 已提交
1972

Z
zhangjinchao01 已提交
1973 1974
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
1975
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
1976 1977
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
1978 1979 1980
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
1981 1982 1983 1984 1985 1986 1987 1988
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
1989

Z
zhangjinchao01 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2014 2015


Z
zhangjinchao01 已提交
2016 2017
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2018
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2019 2020
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2021
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2022 2023
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2024 2025 2026
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2027 2028
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2029

Z
zhangjinchao01 已提交
2030 2031
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2032 2033 2034 2035 2036 2037 2038 2039
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2040
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2041 2042
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2043 2044
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2045 2046 2047 2048
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2049
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2050 2051 2052
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2053 2054 2055 2056 2057

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2058
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2059 2060 2061 2062
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2063 2064
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
Q
qijun 已提交
2078
    def __init__(self, name, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
2079 2080
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2081
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
Z
zhangjinchao01 已提交
2082 2083 2084 2085 2086
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2087

Z
zhangjinchao01 已提交
2088 2089
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2090 2091 2092 2093
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2094 2095 2096

@config_layer('sequence_agent')
class SequenceAgentLayer(LayerBase):
Q
qijun 已提交
2097
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2098 2099 2100
        super(SequenceAgentLayer, self).__init__(
            name, 'sequence_agent', size, inputs=[], device=device)

Q
qijun 已提交
2101

Z
zhangjinchao01 已提交
2102 2103
@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2104
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2105 2106 2107
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2108

Z
zhangjinchao01 已提交
2109 2110
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
Q
qijun 已提交
2111
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2112 2113 2114
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)

Q
qijun 已提交
2115

Z
zhangjinchao01 已提交
2116 2117
@config_layer('sequence_gather_agent')
class SequenceGatherAgentLayer(LayerBase):
Q
qijun 已提交
2118
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2119
        super(SequenceGatherAgentLayer, self).__init__(
Q
qijun 已提交
2120 2121
            name, 'sequence_gather_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2122 2123 2124

@config_layer('sequence_scatter_agent')
class SequenceScatterAgentLayer(LayerBase):
Q
qijun 已提交
2125
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2126
        super(SequenceScatterAgentLayer, self).__init__(
Q
qijun 已提交
2127 2128
            name, 'sequence_scatter_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2129 2130 2131

@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2132 2133 2134 2135 2136
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2137
        for i in range(1, len(inputs)):
Q
qijun 已提交
2138 2139 2140 2141 2142
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2143 2144

@config_func
Q
qijun 已提交
2145 2146 2147
def Link(
        name,
        has_subseq=False, ):
Z
zhangjinchao01 已提交
2148 2149 2150 2151 2152
    link_config = LinkConfig()
    link_config.link_name = name
    link_config.has_subseq = has_subseq
    return link_config

Q
qijun 已提交
2153

Z
zhangjinchao01 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
# will return name of the memory,
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
Q
qijun 已提交
2168 2169 2170 2171 2172 2173 2174 2175
def Memory(
        name,
        size,
        is_sequence=False,
        boot_layer=None,
        boot_bias=False,
        boot_bias_active_type="",
        boot_with_const_id=None, ):
Z
zhangjinchao01 已提交
2176 2177 2178 2179 2180 2181
    agent_name = name + "+delay1"
    if is_sequence:
        agent_layer = SequenceAgentLayer(agent_name, size)
    else:
        agent_layer = AgentLayer(agent_name, size)
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2182
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2183 2184 2185 2186
    memory = g_current_submodel.memories.add()
    memory.layer_name = MakeLayerNameInSubmodel(name)
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
    memory.is_sequence = is_sequence
Q
qijun 已提交
2187
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2188
                   boot_with_const_id is not None))
Q
qijun 已提交
2189 2190 2191 2192
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2193 2194 2195
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2196 2197
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2198 2199 2200
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2201
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2202 2203 2204 2205 2206
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2207

Z
zhangjinchao01 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2219 2220 2221 2222
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2232

Z
zhangjinchao01 已提交
2233 2234
@config_layer('expand')
class ExpandLayer(LayerBase):
Q
qijun 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 device=None,
                 bias=False):
        super(ExpandLayer, self).__init__(
            name, 'expand', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2251 2252 2253

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
Q
qijun 已提交
2254 2255 2256 2257 2258 2259
    def __init__(self, name, inputs, device=None, num_filters=None, bias=False):
        super(FeatMapExpandLayer, self).__init__(
            name, 'featmap_expand', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2260
            self.config.num_filters = num_filters
Q
qijun 已提交
2261
        else:
Z
zhangjinchao01 已提交
2262
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
Q
qijun 已提交
2263
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2264 2265 2266 2267


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 active_type='linear',
                 device=None,
                 bias=False,
                 output_max_index=None):
        super(MaxLayer, self).__init__(
            name, 'max', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2278
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
Q
qijun 已提交
2279 2280
        self.config.trans_type = trans_type
        self.config.active_type = active_type
Z
zhangjinchao01 已提交
2281 2282 2283 2284
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2285 2286
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2287 2288 2289 2290


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
2291
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
2309
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
2310 2311 2312
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
2313
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
2314 2315
        self.config.eos_id = eos_id

Q
qijun 已提交
2316

Z
zhangjinchao01 已提交
2317 2318
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 trans_type='non-seq',
                 device=None,
                 bias=False):
        super(SequenceLastInstanceLayer, self).__init__(
            name,
            'seqlastins',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2336 2337 2338 2339 2340
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2341

Z
zhangjinchao01 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
    def __init__(
            self,
            name,
            inputs,
            active_type='linear',
            trans_type='non-seq',
            device=None,
Q
qijun 已提交
2351 2352 2353 2354 2355 2356 2357 2358
            bias=False, ):
        super(SequenceFirstInstanceLayer, self).__init__(
            name,
            inputs=inputs,
            active_type=active_type,
            device=device,
            bias=bias)
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2359 2360
        self.config.select_first = True

Q
qijun 已提交
2361

Z
zhangjinchao01 已提交
2362 2363
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
Q
qijun 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SequenceConcatLayer, self).__init__(
            name,
            'seqconcat',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
2379 2380 2381 2382 2383
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2384

Z
zhangjinchao01 已提交
2385 2386
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
Q
qijun 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SequenceReshapeLayer, self).__init__(
            name,
            'seqreshape',
Z
zhangjinchao01 已提交
2397
            size,
Q
qijun 已提交
2398 2399 2400 2401 2402
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2403 2404 2405
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2406

Z
zhangjinchao01 已提交
2407 2408
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
Q
qijun 已提交
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SubSequenceLayer, self).__init__(
            name,
            'subseq',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
Z
zhangjinchao01 已提交
2422 2423 2424 2425 2426 2427
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2428

Z
zhangjinchao01 已提交
2429 2430
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
2431 2432 2433
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2434 2435 2436 2437 2438
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
2439

Z
zhangjinchao01 已提交
2440 2441
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
2442 2443 2444
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2445 2446 2447 2448
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2449 2450 2451
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
2452 2453 2454

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
2455 2456 2457
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2458 2459 2460 2461 2462 2463
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2464

Z
zhangjinchao01 已提交
2465 2466
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
2467 2468 2469
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2470 2471 2472 2473
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2474 2475 2476
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
2477 2478 2479

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
2480 2481 2482
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2483 2484 2485 2486
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2487

Z
zhangjinchao01 已提交
2488 2489
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
2490
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2491
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
2492 2493 2494
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2495 2496 2497
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
2498 2499
        self.set_layer_size(size)

Q
qijun 已提交
2500

Z
zhangjinchao01 已提交
2501 2502
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
2503
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2504 2505
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
2506 2507
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
2508 2509 2510 2511 2512 2513 2514 2515
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
2516

L
liaogang 已提交
2517 2518
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
2519
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
2520
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2521
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
2522
        input_layer = self.get_input_layer(0)
Q
qijun 已提交
2523 2524
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name,
                       self.config.inputs[0].bilinear_interp_conf)
L
liaogang 已提交
2525
        conf = self.inputs[0].bilinear_interp
Q
qijun 已提交
2526 2527 2528
        self.set_layer_size(conf.out_size_x * conf.out_size_y *
                            conf.num_channels)

L
liaogang 已提交
2529

Z
zhangjinchao01 已提交
2530 2531
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
2532
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2533
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
2534 2535 2536
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
2537 2538 2539
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2540

Z
zhangjinchao01 已提交
2541 2542
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
2543
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
2544
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
2545
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2546
        self.config.cos_scale = cos_scale
Q
qijun 已提交
2547 2548
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
2549 2550 2551
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
2552

Q
qijun 已提交
2553

Z
zhangjinchao01 已提交
2554 2555
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
2556
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2557 2558
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
2559 2560
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
                 active_type='linear',
                 device=None,
                 bias=False):
        super(AverageLayer, self).__init__(
            name,
            'average',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
Z
zhangjinchao01 已提交
2588
        self.config.average_strategy = average_strategy
Q
qijun 已提交
2589
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2590 2591 2592 2593 2594 2595
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2596

Z
zhangjinchao01 已提交
2597 2598
@config_layer('cos')
class CosSimLayer(LayerBase):
Q
qijun 已提交
2599
    def __init__(self, name, inputs, cos_scale=5, device=None):
Z
zhangjinchao01 已提交
2600 2601 2602 2603 2604 2605
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2606
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
2607 2608 2609 2610


@config_layer('tensor')
class TensorLayer(LayerBase):
Q
qijun 已提交
2611 2612 2613
    def __init__(self, name, size, inputs, device=None, bias=True, **xargs):
        super(TensorLayer, self).__init__(
            name, 'tensor', size, inputs=inputs, device=device, **xargs)
Z
zhangjinchao01 已提交
2614 2615
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
2616 2617
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
Q
qijun 已提交
2628 2629 2630 2631 2632 2633 2634
    def __init__(self,
                 name,
                 inputs,
                 size=0,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
Z
zhangjinchao01 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
2652
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2653 2654 2655
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
2656
            else:
2657 2658
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
2659 2660 2661 2662
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2663 2664 2665 2666
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
2667 2668 2669
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
2670
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
2671 2672 2673
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
2674
            elif isinstance(input, Projection):
Q
qijun 已提交
2675 2676 2677 2678 2679 2680
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
2692 2693
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

2705 2706 2707 2708 2709 2710
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
2711

2712 2713 2714
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
2715

2716 2717
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
2718

Q
qijun 已提交
2719

Z
zhangjinchao01 已提交
2720 2721
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
2722
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
2723 2724
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
2725

Z
zhangjinchao01 已提交
2726 2727
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
2728
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2729
        config_assert(inputs, 'inputs cannot be empty')
2730
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
2731 2732 2733 2734 2735 2736
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
2737
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2738 2739 2740 2741
                size += input_layer.size

        self.set_layer_size(size)

Q
qijun 已提交
2742

Z
zhangjinchao01 已提交
2743 2744 2745
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
2746
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2747 2748 2749
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
2750 2751

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
2752 2753 2754 2755 2756 2757
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
2758

Z
zhangjinchao01 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
2779
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2780
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
2781
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2782 2783
            self.create_input_parameter(input_index, psize, dims)

2784 2785 2786 2787 2788 2789 2790
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

2791 2792 2793
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
2794

Q
qijun 已提交
2795

Z
zhangjinchao01 已提交
2796 2797
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
2798
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
2799 2800
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2810

Z
zhangjinchao01 已提交
2811 2812
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
2813 2814 2815 2816 2817 2818 2819 2820
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2821 2822 2823 2824 2825 2826 2827 2828
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
2829
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2830 2831 2832 2833 2834
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
2835

Z
zhangjinchao01 已提交
2836 2837
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
2848 2849 2850
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
2851 2852 2853 2854 2855
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2856 2857 2858
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
2859

Z
zhangjinchao01 已提交
2860 2861 2862
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
2863 2864 2865 2866
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2867 2868 2869 2870
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
2871

Z
zhangjinchao01 已提交
2872 2873
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
2874 2875 2876 2877 2878 2879 2880 2881
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
2882 2883
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
2884 2885 2886 2887
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
2888 2889
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
2890
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
2891
        self.set_layer_size(size)
Q
qijun 已提交
2892
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2893 2894 2895
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
2896 2897
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
2898
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
2899 2900
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
2901 2902 2903

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
2915 2916 2917 2918 2919 2920
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
2921
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2922 2923 2924
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
2925

Z
zhangjinchao01 已提交
2926 2927
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
2928 2929 2930 2931 2932 2933 2934
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
2935 2936
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
2937 2938 2939
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
2940 2941 2942 2943 2944
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2945 2946 2947
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
2948

Z
zhangjinchao01 已提交
2949 2950 2951 2952 2953 2954 2955
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
2956 2957


Z
zhangjinchao01 已提交
2958 2959
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
2960
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
2961
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
2962 2963
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
Z
zhangjinchao01 已提交
2964 2965 2966
        self.create_input_parameter(0, size * (size + 2), [size, size + 2])
        self.config.coeff = coeff

Q
qijun 已提交
2967

Z
zhangjinchao01 已提交
2968 2969 2970 2971 2972 2973 2974 2975
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
2976 2977


Z
zhangjinchao01 已提交
2978 2979
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
2980
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2981 2982 2983 2984 2985 2986 2987
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
        self.create_input_parameter(0, size * (size + 2), [size, size + 2])

Q
qijun 已提交
2988

Z
zhangjinchao01 已提交
2989 2990
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
2991
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
2992 2993 2994 2995
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
2996

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3018 3019
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3020
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3021 3022 3023 3024 3025 3026
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3027
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3028 3029 3030 3031
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3032
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3033
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3034

Q
qijun 已提交
3035

Z
zhangjinchao01 已提交
3036
@config_func
Q
qijun 已提交
3037
def ParameterHook(type, **kwargs):
Z
zhangjinchao01 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
    if type == 'pruning':
        mask_filename = kwargs.get('mask_filename', None)
        assert mask_filename is not None
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        hook.purning_mask_filename = mask_filename
        return hook
    else:
        return None


@config_func
Q
qijun 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
              update_hooks=None):
Z
zhangjinchao01 已提交
3072 3073 3074 3075 3076 3077 3078

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3090 3091
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3092 3093 3094 3095 3096

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3097 3098 3099 3100
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3101

Q
qijun 已提交
3102 3103
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3104 3105 3106
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3107 3108 3109 3110 3111 3112
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3113 3114
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3115 3116
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3117 3118
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3119 3120 3121 3122 3123 3124
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3125 3126 3127
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3128 3129 3130 3131
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3132 3133 3134 3135 3136 3137 3138

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3139 3140 3141 3142
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3143 3144
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
            update_hooks = update_hooks(para.name)

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
            para.update_hooks.extend(update_hooks)

    g_parameter_map[name] = para


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
3166

Z
zhangjinchao01 已提交
3167 3168 3169 3170 3171
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
3172

Z
zhangjinchao01 已提交
3173 3174 3175 3176 3177
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
3178

Z
zhangjinchao01 已提交
3179 3180 3181 3182 3183
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
3184

Z
zhangjinchao01 已提交
3185 3186 3187 3188 3189
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
3190

Z
zhangjinchao01 已提交
3191 3192 3193 3194 3195
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
3196

Z
zhangjinchao01 已提交
3197 3198 3199 3200 3201
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
3202

Z
zhangjinchao01 已提交
3203 3204 3205 3206 3207
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
3208

Z
zhangjinchao01 已提交
3209 3210 3211 3212 3213
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
3214

Z
zhangjinchao01 已提交
3215 3216 3217 3218 3219
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
3220

Z
zhangjinchao01 已提交
3221 3222 3223 3224 3225
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
3226

Z
zhangjinchao01 已提交
3227 3228 3229 3230 3231
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
3232 3233 3234
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
3235 3236
    return Import

Q
qijun 已提交
3237

Z
zhangjinchao01 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
settings = dict(
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
3266 3267 3268
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
3269

Q
qijun 已提交
3270
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
3271 3272 3273 3274

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
3275 3276
    start_pass=0, )

Z
zhangjinchao01 已提交
3277 3278 3279 3280 3281

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
3282 3283
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
3295

Z
zhangjinchao01 已提交
3296 3297 3298 3299
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
3300

Z
zhangjinchao01 已提交
3301 3302 3303 3304 3305 3306 3307 3308 3309
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
3310

Z
zhangjinchao01 已提交
3311 3312 3313 3314
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
3315

Z
zhangjinchao01 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
3331
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
3332 3333 3334 3335 3336

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
3337

Z
zhangjinchao01 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
3354

Z
zhangjinchao01 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
3367

Z
zhangjinchao01 已提交
3368 3369 3370 3371
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Q
qijun 已提交
3372

Z
zhangjinchao01 已提交
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
def parse_config(config_file, config_arg_str):
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
    init_config_environment()

    config_args = {}

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

    g_config.model_config.type = 'nn'

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel

    execfile(config_file, make_config_environment(config_file, config_args))
    for k, v in settings.iteritems():
        if v is None:
            continue
Q
qijun 已提交
3410
        g_config.opt_config.__setattr__(k, v)
Z
zhangjinchao01 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


def parse_config_and_serialize(config_file, config_arg_str):
    try:
        config = parse_config(config_file, config_arg_str)
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
3437

Z
zhangjinchao01 已提交
3438 3439 3440 3441 3442 3443 3444 3445
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise