# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function ''' The following functions are available in the config file: Bias: define bias. To be used as value of bias argument in Layer(). Data: define data provider. Input: define input layer for a layer. To be used as element of inputs argument in Layer(). Conv: define a convolution operation for an input of a layer. Norm: define a normalization operation for an input of a layer. Pool: define a pooling operation for an input of a layer. Layer: define a layer. Parameter: define a parameter. Import: import another config file. If the imported config file name is a relative path, then it will be searched under the directory of the current config file. Inputs(layer_names...): Define the name of the input layers of the NeuralNetwork. The type of these layers must be "data". These layers will be provided with the DataBatch obtained from DataProvider. The data streams from DataProvider must have the same order. Outputs(layer_names...): Define the name of the output layers of the NeuralNetwork. Usually the output is simply the cost layer. You can specify other layers as outputs and calculate the cost (and its derivative) yourself. default_initial_std(val) default_initial_mean(val) default_momentum(val): default_decay_rate(val): Set the default value for these parameters get_config_arg(name, type, default): Get the value for a config parameter. *** customized extension to config_parser *** The functionality of the config_parser can be extended. If the config_arg_str for parse_config() contains extension_module_name=[MODULE_NAME], then config_parser will call MODULE_NAME.get_config_funcs(g_config) MODULE_NAME.get_config_funcs() should return a dictionary of name to functions, those functions will be available in the config file. See trainer/tests/config_parser_test.py for example To use this from paddle_trainer, paddle_trainer should be called with --config_args=extension_module_name=[MODULE_NAME] ''' import copy import logging import os import sys import traceback import math import shutil try: from paddle.proto.DataConfig_pb2 import DataConfig from paddle.proto.ModelConfig_pb2 import ModelConfig from paddle.proto.ModelConfig_pb2 import LayerConfig from paddle.proto.ModelConfig_pb2 import LayerInputConfig from paddle.proto.ModelConfig_pb2 import ProjectionConfig from paddle.proto.ModelConfig_pb2 import OperatorConfig from paddle.proto.ModelConfig_pb2 import GeneratorConfig from paddle.proto.ModelConfig_pb2 import LinkConfig from paddle.proto.ParameterConfig_pb2 import ParameterConfig from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig from paddle.proto.TrainerConfig_pb2 import TrainerConfig except Exception as e: traceback.print_exc() raise logging.basicConfig( format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', ) logger = logging.getLogger('paddle') logger.setLevel(logging.INFO) __real_print__ = print print = logger.info # from layer type name to layer class g_layer_type_map = {} # Initialize global variables. We use this function so that we can # call parse_config() multiple times def init_config_environment( g_default_momentum=None, g_default_decay_rate=None, g_default_initial_mean=0., g_default_initial_std=0.01, g_default_num_batches_regularization=None, g_default_initial_strategy=0, g_default_initial_smart=False, g_default_gradient_clipping_threshold=None, g_default_device=None, g_default_update_hooks=None, g_default_compact_func=None, g_config=TrainerConfig(), g_layer_map={}, g_parameter_map={}, g_extended_config_funcs={}, # store command args of paddle_trainer g_command_config_args={}, # Used for PyDataProvider to avoid duplicate module name g_py_module_name_list=[], g_current_submodel=None, g_root_submodel=None, g_submodel_map={}, g_submodel_stack=[], g_add_submodel_suffix=False, ): for k, v in locals().iteritems(): globals()[k] = copy.deepcopy(v) # Because type is widely used as a variable name in this code. # we need a different function name for the builtin type() def type_of(x): return type(x) # Check a condition derived config file def config_assert(b, msg): if not b: logger.fatal(msg) g_config_funcs = {} # decorator for indicating a function which can be used in config file def config_func(func): g_config_funcs[func.func_name] = func return func # decorator for indicating a class which can be used in config file def config_class(cls): g_config_funcs[cls.__name__] = cls return cls # decorator for indicating a class for a layer type def config_layer(layer_type): def wrap(cls): g_config_funcs[cls.__name__] = cls g_layer_type_map[layer_type] = cls return cls return wrap def gen_parameter_name(layer_name, input_index): return '_%s.w%d' % (layer_name, input_index) def gen_bias_parameter_name(layer_name): return '_%s.wbias' % layer_name def default(x, default_value): return default_value if x is None else x class Cfg(object): def add_keys(self, locals): for k, v in locals.iteritems(): if not k.startswith('_'): self.__setattr__(k, v) # functions available in config file # Define the name of the input layers of the NeuralNetwork. # The type of these layers must be "data". # These layers will be provided with the DataBatch obtained # from DataProvider. The data streams from DataProvider must # have the same order. @config_func def Inputs(*args): for name in args: name = MakeLayerNameInSubmodel(name) global g_current_submodel, g_root_submodel if g_current_submodel.is_recurrent_layer_group: config_assert(False, "Do not set Inputs in recurrent layer group") else: g_current_submodel.input_layer_names.append(name) if g_current_submodel is g_root_submodel: g_config.model_config.input_layer_names.append(name) @config_func def HasInputsSet(): return len(g_current_submodel.input_layer_names) != 0 # Define the name of the output layers of the NeuralNetwork. # Usually the output is simply the cost layer. # You can specify other layers as outputs and calculate the # cost (and its derivative) yourself. @config_func def Outputs(*args): for name in args: name = MakeLayerNameInSubmodel(name) global g_current_submodel, g_root_submodel if g_current_submodel.is_recurrent_layer_group: config_assert(False, "Do not set Outputs in recurrent layer group") else: g_current_submodel.output_layer_names.append(name) if g_current_submodel is g_root_submodel: g_config.model_config.output_layer_names.append(name) @config_func def SubModelBegin(name): global g_current_submodel, g_root_submodel, g_submodel_stack g_submodel_stack.append(g_current_submodel) name = MakeLayerNameInParentSubmodel(name) #rename in nested submodel config_assert(name not in g_submodel_map, 'Duplicated submodel name: %s' % name) sub_model = g_config.model_config.sub_models.add() sub_model.name = name g_submodel_map[name] = sub_model g_current_submodel = sub_model @config_func def SubModelEnd(name=None): global g_current_submodel, g_root_submodel, g_submodel_stack config_assert(g_current_submodel is not g_root_submodel, "submodel not begin") if name is not None: config_assert( g_current_submodel.name == MakeLayerNameInParentSubmodel(name), "submodel name error") g_current_submodel = g_submodel_stack.pop() def MakeLayerNameInParentSubmodel(name): suffix = "" if len(g_submodel_stack) > 1: suffix = "@" + g_submodel_stack[-1].name return name + suffix def GetLayerBaseName(name): return name.split('@')[0] def MakeLayerNameInSubmodel(name, submodel_name=None): global g_current_submodel global g_add_submodel_suffix if (submodel_name is None and not g_add_submodel_suffix and not g_current_submodel.is_recurrent_layer_group): return name if submodel_name is None: submodel_name = g_current_submodel.name return name + "@" + submodel_name # Define a recurrent layer group begin with RecurrentLayerGroupBegin # and end with RecurrentLayerGroupEnd. # A recurrent layer group forward/backward one frame after previous frame # forward/backward through all layers in layer group. # in_links are names of layer used as input layer in the layer group. # out_links are names of layer in layer group used as outside layer's input. # # If generator is set, the layer group need one or more than one outlinks. # The first outlink should always be the generated token ids. # If generator.num_results_per_sample is not set, the output for one sample is # a ids sequence. Else if num_results_per_sample is more than one, # the output for one sample is up to #num_results_per_sample generated # sequences, which are packed in one sequence in output ids vector. Each # generated sequence has a generation probability. The probabilities for one # sample are stored in one row of output value matrix. # Packed generated sequences format, for each i: # seq_i_length: one interger, seq_i content length, # [seq_i content], length = seq_i_length # seq_i_end_mark: one interger, for format check, always -1 # You can use "seq_text_printer" to print the output of the generator. @config_func def RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed=False, target_inlinkname=""): global g_current_submodel config_assert(g_config.model_config.type == "recurrent_nn", "RecurrentLayerGroup should be used only in recurrent_nn") RecurrentLayerGroup(name=name) # add to father model SubModelBegin(name) g_current_submodel.is_recurrent_layer_group = True g_current_submodel.reversed = seq_reversed g_current_submodel.target_inlinkid = -1 in_links_count = 0 for linkid, link in enumerate(in_links): if isinstance(link, basestring): name = link has_subseq = False else: name = link.link_name has_subseq = link.has_subseq # assign target_inlinkid according to target_inlinkname if target_inlinkname == name: g_current_submodel.target_inlinkid = linkid if in_links_count == 0: in_links_has_subseq = has_subseq else: config_assert( in_links_has_subseq == has_subseq, "The sequence type of in_links should be the same in RecurrentLayerGroup" ) in_links_count += 1 layer_name = MakeLayerNameInParentSubmodel(name) layer = g_layer_map[layer_name] if has_subseq: SequenceScatterAgentLayer(name=name, size=layer.size) else: ScatterAgentLayer(name=name, size=layer.size) pair = g_current_submodel.in_links.add() pair.layer_name = layer_name pair.link_name = MakeLayerNameInSubmodel(name) pair.has_subseq = has_subseq @config_func def RecurrentLayerGroupSetOutLink(link): if isinstance(link, basestring): name = link has_subseq = False else: name = link.link_name has_subseq = link.has_subseq layer_name = MakeLayerNameInParentSubmodel(name) pair = g_current_submodel.out_links.add() pair.layer_name = MakeLayerNameInSubmodel(name) pair.link_name = layer_name pair.has_subseq = has_subseq def RecurrentLayerGroupSetGenerator(generator=None): generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name) g_current_submodel.generator.CopyFrom(generator) @config_func def RecurrentLayerGroupBegin(name, in_links, out_links, generator=None, target_inlinkname="", seq_reversed=False): RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed, target_inlinkname) for link in out_links: RecurrentLayerGroupSetOutLink(link) if generator is not None: RecurrentLayerGroupSetGenerator(generator) config_assert( len(in_links) == 0, "no in_links should be passed to generator") config_assert( len(out_links) >= 1, "one or more than one out_links should be passed to generator") @config_func def RecurrentLayerGroupEnd(name): global g_current_submodel config_assert(g_current_submodel.is_recurrent_layer_group, "RecurrentLayerGroup not begin") for pair in g_current_submodel.memories: #check exist layer = g_layer_map[pair.layer_name] config_assert(layer is not None, "memory declare wrong name:%s" % pair.layer_name) memory_link = g_layer_map[pair.link_name] config_assert(layer.size == memory_link.size, "memory declare wrong size:%d" % memory_link.size) prev_submodel = g_current_submodel SubModelEnd(name) for pair in prev_submodel.out_links: layer = g_layer_map[pair.layer_name] # add out agent to father model agent_name = GetLayerBaseName(pair.link_name) if prev_submodel.HasField("generator"): DataLayer(name=agent_name, size=layer.size) elif pair.has_subseq: SequenceGatherAgentLayer(name=agent_name, size=layer.size) else: GatherAgentLayer(name=agent_name, size=layer.size) # Define the model type # currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn" @config_func def model_type(name): g_config.model_config.type = name @config_class class Bias(Cfg): def __init__( self, parameter_name=None, learning_rate=None, momentum=None, decay_rate=None, decay_rate_l1=None, initial_mean=None, initial_std=None, initial_strategy=None, initial_smart=None, num_batches_regularization=None, sparse_remote_update=None, gradient_clipping_threshold=None, is_static=None, is_shared=None, ): self.add_keys(locals()) # Define one input for a layer @config_class class Input(Cfg): def __init__( self, input_layer_name, parameter_name=None, learning_rate=None, momentum=None, decay_rate=None, decay_rate_l1=None, initial_mean=None, initial_std=None, initial_strategy=None, initial_smart=None, num_batches_regularization=None, sparse_remote_update=None, sparse_update=None, gradient_clipping_threshold=None, conv=None, bilinear_interp=None, norm=None, pool=None, image=None, block_expand=None, maxout=None, spp=None, format=None, nnz=None, is_static=None, is_shared=None, update_hooks=None, input_layer_argument=None, ): self.add_keys(locals()) self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name) # Define a projection for iexed layer @config_class class Projection(Input): type = None # subclass should set it correctly def __init__( self, input_layer_name, size=0, # projection output size parameter_name=None, learning_rate=None, momentum=None, decay_rate=None, decay_rate_l1=None, initial_mean=None, initial_std=None, initial_strategy=None, initial_smart=None, num_batches_regularization=None, sparse_remote_update=None, sparse_update=None, gradient_clipping_threshold=None, ptype=None, format=None, nnz=None, is_static=None, is_shared=None, update_hooks=None, input_layer_argument=None, ): self.add_keys(locals()) self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name) self.proj_conf = ProjectionConfig() if ptype is not None: self.proj_conf.type = ptype else: self.proj_conf.type = self.type # calculate the output_size given input_size. return 0 # to indicate using the size from Layer config def calc_output_size(self, input_layer_config): return self.size def calc_parameter_size(self, input_size, output_size): raise NotimplementedError def calc_parameter_dims(self, input_size, output_size): raise NotimplementedError @config_class class IdentityProjection(Projection): type = 'identity' def calc_output_size(self, input_layer_config): return input_layer_config.size def calc_parameter_size(self, input_size, output_size): return 0 def calc_parameter_dims(self, input_size, output_size): return [] # Like IdentityProjection, but layer size may smaller than input size, # the projection select dimesions [offset, offset+layer_size) from input @config_class class IdentityOffsetProjection(Projection): type = 'identity_offset' def __init__(self, input_layer_name, offset, **xargs): super(IdentityOffsetProjection, self).__init__(input_layer_name, **xargs) self.proj_conf.offset = offset def calc_parameter_size(self, input_size, output_size): return 0 def calc_parameter_dims(self, input_size, output_size): return [] # DotMulProjection performs element-wise multiplication with weight @config_class class DotMulProjection(Projection): type = 'dot_mul' def calc_output_size(self, input_layer_config): return input_layer_config.size def calc_parameter_size(self, input_size, output_size): return output_size def calc_parameter_dims(self, input_size, output_size): return [1, output_size] # ScalingProjection @config_class class ScalingProjection(Projection): type = 'scaling' def calc_output_size(self, input_layer_config): return input_layer_config.size def calc_parameter_size(self, input_size, output_size): return 1 def calc_parameter_dims(self, input_size, output_size): return [1, 1] @config_class class TableProjection(Projection): type = 'table' def calc_parameter_size(self, input_size, output_size): return input_size * output_size def calc_parameter_dims(self, input_size, output_size): return [input_size, output_size] @config_class class FullMatrixProjection(Projection): type = 'fc' def calc_parameter_size(self, input_size, output_size): return input_size * output_size def calc_parameter_dims(self, input_size, output_size): return [input_size, output_size] @config_class class TransposedFullMatrixProjection(Projection): type = 'trans_fc' def calc_parameter_size(self, input_size, output_size): return input_size * output_size def calc_parameter_dims(self, input_size, output_size): return [output_size, input_size] @config_class class ContextProjection(Projection): type = 'context' def __init__(self, input_layer_name, context_start, context_length, trainable_padding, **xargs): super(ContextProjection, self).__init__(input_layer_name, **xargs) self.proj_conf.context_start = context_start self.proj_conf.context_length = context_length self.proj_conf.trainable_padding = trainable_padding self._total_pad = max(0, -self.proj_conf.context_start) \ + max(0, self.proj_conf.context_start \ + self.proj_conf.context_length - 1) def calc_output_size(self, input_layer_config): return input_layer_config.size * self.proj_conf.context_length def calc_parameter_size(self, input_size, output_size): if self.proj_conf.trainable_padding == False: return 0 else: return input_size * self._total_pad def calc_parameter_dims(self, input_size, output_size): return [self._total_pad, input_size] _total_pad = 0 @config_class class ConvProjection(Projection): type = 'conv' def __init__(self, input_layer_name, num_filters=None, conv_conf=None, **xargs): super(ConvProjection, self).__init__(input_layer_name, **xargs) if num_filters is not None: self.proj_conf.num_filters = num_filters parse_conv(conv_conf, input_layer_name, self.proj_conf.conv_conf, num_filters) # TODO: support rectangle input self.proj_conf.output_size = (self.proj_conf.conv_conf.output_x **2) * num_filters def calc_output_size(self, input_layer_config): return self.proj_conf.output_size def calc_parameter_size(self, input_size, output_size): co = self.proj_conf.num_filters ci = self.proj_conf.conv_conf.channels fh = self.proj_conf.conv_conf.filter_size fw = self.proj_conf.conv_conf.filter_size_y gr = self.proj_conf.conv_conf.groups return co * ci * fh * fw / gr def calc_bias_size(self): return self.proj_conf.num_filters def calc_parameter_dims(self, input_size, output_size): return None # Define a operator for mixed layer @config_class class Operator(Cfg): type = None # subclass should set it correctly def __init__( self, input_layer_names, ): self.add_keys(locals()) self.operator_conf = OperatorConfig() self.operator_conf.type = self.type def check_dims(self): pass def calc_output_size(self, input_sizes): return 0 @config_class class DotMulOperator(Operator): type = 'dot_mul' def __init__(self, input_layer_names, scale=None, **xargs): super(DotMulOperator, self).__init__(input_layer_names, **xargs) if scale is not None: self.operator_conf.dotmul_scale = scale config_assert(len(input_layer_names) == 2, "DotMul is binary operator") def check_dims(self): for i in range(2): config_assert(self.operator_conf.input_sizes[i] == self.operator_conf.output_size, "DotMul input_size != output_size") def calc_output_size(self, input_sizes): return input_sizes[0] @config_class class ConvOperator(Operator): type = 'conv' def __init__(self, input_layer_names, num_filters=None, conv_conf=None, **xargs): super(ConvOperator, self).__init__(input_layer_names, **xargs) if num_filters is not None: self.operator_conf.num_filters = num_filters parse_conv(conv_conf, MakeLayerNameInSubmodel(input_layer_names[0]), self.operator_conf.conv_conf, num_filters) self.operator_conf.output_size = (self.operator_conf.conv_conf.output_x **2) * num_filters config_assert(len(input_layer_names) == 2, "Conv is binary operator") def calc_output_size(self, input_sizes): return self.operator_conf.output_size # please refer to the comments in proto/ModelConfig.proto @config_class class Conv(Cfg): def __init__(self, filter_size, channels, padding=None, stride=None, groups=None, filter_channels=None, output_x=None, img_size=None, caffe_mode=True, filter_size_y=None, padding_y=None, stride_y=None): self.add_keys(locals()) if filter_size_y is None: self.filter_size_y = filter_size if padding_y is None: self.padding_y = padding if stride_y is None: self.stride_y = stride if output_x is not None: config_assert(output_x <= 0) # please refer to the comments in proto/ModelConfig.proto @config_class class BilinearInterp(Cfg): def __init__(self, out_size_x=None, out_size_y=None, num_channels=None): self.add_keys(locals()) # please refer to the comments in proto/ModelConfig.proto @config_class class Pool(Cfg): def __init__( self, pool_type, channels, size_x, size_y=None, img_width=None, start=None, stride=None, # 1 by defalut in protobuf stride_y=None, padding=None, # 0 by defalut in protobuf padding_y=None): self.add_keys(locals()) # please refer to the comments in proto/ModelConfig.proto @config_class class SpatialPyramidPool(Cfg): def __init__(self, pool_type, pyramid_height, channels, img_width=None): self.add_keys(locals()) # please refer to the comments in proto/ModelConfig.proto @config_class class Norm(Cfg): def __init__(self, norm_type, channels, size, scale, pow, output_x=None, img_size=None, blocked=None): self.add_keys(locals()) # please refer to the comments in proto/ModelConfig.proto @config_class class Image(Cfg): def __init__(self, channels, img_size=None): self.add_keys(locals()) @config_class class BlockExpand(Cfg): def __init__(self, channels, padding_x=0, padding_y=0, stride_x=0, stride_y=0, block_x=0, block_y=0, img_size_x=0, img_size_y=0, output_x=0, output_y=0): self.add_keys(locals()) @config_class class MaxOut(Cfg): def __init__(self, channels, groups, img_size_x=0, img_size_y=0): self.add_keys(locals()) def DataBase(async_load_data=False, constant_slots=None, data_ratio=1, is_main_data=True, usage_ratio=None): # default: all sub dataproviders are treat as "main data". # see proto/DataConfig.proto for is_main_data data_config = DataConfig() data_config.async_load_data = async_load_data if constant_slots: data_config.constant_slots.extend(constant_slots) data_config.data_ratio = data_ratio data_config.is_main_data = is_main_data usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"]) config_assert(usage_ratio >= 0 and usage_ratio <= 1, "The range of usage_ratio is [0, 1]") data_config.usage_ratio = usage_ratio return data_config @config_func def SimpleData(files=None, feat_dim=None, context_len=None, buffer_capacity=None, **xargs): data_config = DataBase(**xargs) data_config.type = 'simple' data_config.files = files data_config.feat_dim = feat_dim if context_len is not None: data_config.context_len = context_len if buffer_capacity: data_config.buffer_capacity = buffer_capacity return data_config @config_func def PyData(files=None, type=None, file_group_queue_capacity=None, load_data_module=None, load_data_object=None, load_data_args="", load_file_count=None, constant_slots=None, load_thread_num=None, **xargs): data_config = DataBase(**xargs) data_config.type = 'py' if load_data_module in g_py_module_name_list: def get_path(module): m = __import__(load_data_module) return os.path.split(os.path.realpath(m.__file__))[0] # python C-api is not thread safe, one module can only be import once, # so here we nedd to copy the module with different names if it has to be # imported several times. module_new_name = "%s_copy_%d" % (load_data_module, len(g_py_module_name_list)) g_py_module_name_list.append(module_new_name) module_path = "%s/%s.py" % (get_path(load_data_module), load_data_module) new_module_path = "%s/%s.py" % (get_path(load_data_module), module_new_name) if os.path.isfile(module_path) == False: raise Exception("File %s is not exist." % module_path) shutil.copy2(module_path, new_module_path) load_data_module = module_new_name else: g_py_module_name_list.append(load_data_module) if load_data_module is not None and load_data_object is not None: data_config.load_data_module = load_data_module data_config.load_data_object = load_data_object else: raise ValueError('load_data_module, load_data_object is not defined.') data_config.load_data_args = load_data_args data_config.files = files or '' if file_group_queue_capacity is not None: data_config.file_group_conf.queue_capacity = file_group_queue_capacity if load_file_count is not None: data_config.file_group_conf.load_file_count = load_file_count if load_thread_num is not None: data_config.file_group_conf.load_thread_num = load_thread_num if constant_slots: data_config.constant_slots.extend(constant_slots) return data_config @config_func def ProtoData(files=None, type=None, file_group_queue_capacity=None, load_file_count=None, constant_slots=None, load_thread_num=None, **xargs): data_config = DataBase(**xargs) if type is None: data_config.type = 'proto' else: data_config.type = type data_config.files = files # When type="proto_group", one data provider contains at most # load_file_count files, and there are at most # (queue_capacity + load_thread_num + 1) data providers in memory if file_group_queue_capacity is not None: data_config.file_group_conf.queue_capacity = file_group_queue_capacity if load_file_count is not None: data_config.file_group_conf.load_file_count = load_file_count if load_thread_num is not None: data_config.file_group_conf.load_thread_num = load_thread_num if constant_slots: data_config.constant_slots.extend(constant_slots) return data_config #real data for training is actually provided by "sub_data" data providers. @config_func def MultiData(sub_data=[]): data_config = DataConfig() data_config.type = 'multi' data_config.sub_data_configs.extend(sub_data) return data_config @config_func def Data(type, files=None, feat_dim=None, slot_dims=None, context_len=None, buffer_capacity=None, **xargs): data_config = DataBase(**xargs) data_config.type = type data_config.files = files data_config.feat_dim = feat_dim data_config.slot_dims.extend(slot_dims) if context_len is not None: data_config.context_len = context_len data_config.buffer_capacity = buffer_capacity return data_config @config_func def TrainData(data_config, async_load_data=None): config_assert(not g_config.HasField('data_config'), 'Only one TrainData definition is allowed') g_config.data_config.CopyFrom(data_config) g_config.data_config.for_test = False if async_load_data is not None: logger.warning("Deprecated: async_load_data should be used inside" " Data definition") g_config.data_config.async_load_data = async_load_data @config_func def TestData(data_config, async_load_data=None): config_assert(not g_config.HasField('test_data_config'), 'Only one TestData definition is allowed') g_config.test_data_config.CopyFrom(data_config) g_config.test_data_config.for_test = True if async_load_data is not None: logger.warning("Deprecated: async_load_data should be used inside" " Data definition") g_config.test_data_config.async_load_data = async_load_data def parse_bilinear(bilinear, input_layer_name, bilinear_conf): bilinear_conf.out_size_x = bilinear.out_size_x bilinear_conf.out_size_y = bilinear.out_size_y bilinear_conf.num_channels = bilinear.num_channels ''' caffe_mode: compute the output size using floor instead of ceil, which is consistent of caffe and CuDNN's convention. ''' def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode): output = (2 * padding + img_size - filter_size) / float(stride) if caffe_mode: return 1 + int(math.floor(output)) else: return 1 + int(math.ceil(output)) ''' calcualte image_size based on output_size for convolution. It is the reverse function of cnn_output_size ''' def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode): if caffe_mode: img_size = (output_size - 1) * stride + filter_size - 2 * padding else: img_size = (output_size - 2) * stride + filter_size - 2 * padding + 1 return img_size def parse_pool(pool, input_layer_name, pool_conf): pool_conf.pool_type = pool.pool_type config_assert(pool.pool_type in [ 'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool' ], "pool-type %s is not in " "['max-projection', 'avg-projection', " "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type) pool_conf.channels = pool.channels pool_conf.size_x = pool.size_x pool_conf.stride = pool.stride pool_conf.size_y = default(pool.size_y, pool_conf.size_x) pool_conf.stride_y = default(pool.stride_y, pool_conf.stride) img_pixels = g_layer_map[input_layer_name].size / pool.channels # the img_width may be removed, # and it can be calculated automatically later. pool_conf.img_size = default(pool.img_width, int(img_pixels**0.5)) pool_conf.img_size_y = img_pixels / pool_conf.img_size config_assert(pool_conf.img_size * pool_conf.img_size_y == img_pixels, "Incorrect input image size %d for input image pixels %d" % (pool_conf.img_size, img_pixels)) config_assert(not pool.start, "start is deprecated in pooling.") if pool.padding is not None: pool_conf.padding = pool.padding pool_conf.padding_y = default(pool.padding_y, pool_conf.padding) pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x, pool_conf.padding, pool_conf.stride, False) pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y, pool_conf.padding_y, pool_conf.stride_y, False) def parse_spp(spp, input_layer_name, spp_conf): spp_conf.pool_type = spp.pool_type config_assert(spp.pool_type in ['max-projection', 'avg-projection'], "pool-type %s is not in " "['max-projection', 'avg-projection']" % spp.pool_type) spp_conf.pyramid_height = spp.pyramid_height spp_conf.channels = spp.channels img_pixels = g_layer_map[input_layer_name].size / spp_conf.channels spp_conf.img_size = default(spp.img_width, int(img_pixels**0.5)) spp_conf.img_size_y = img_pixels / spp_conf.img_size config_assert(spp_conf.img_size * spp_conf.img_size_y == img_pixels, "Incorrect input image size %d for input image pixels %d" % (spp_conf.img_size, img_pixels)) def parse_image(image, input_layer_name, image_conf): image_conf.channels = image.channels image_pixels = g_layer_map[input_layer_name].size / image_conf.channels image_conf.img_size = int(image_pixels**0.5) config_assert((image_conf.img_size**2) == image_pixels, "Incorrect input image size %d for input image pixels %d" % (image_conf.img_size, image_pixels)) def parse_norm(norm, input_layer_name, norm_conf): norm_conf.norm_type = norm.norm_type config_assert(norm.norm_type in ['rnorm', 'cmrnorm-projection'], "norm-type %s is not in [rnorm, 'cmrnorm-projection']" % norm.norm_type) norm_conf.channels = norm.channels norm_conf.size = norm.size norm_conf.scale = norm.scale norm_conf.pow = norm.pow norm_conf.blocked = norm.blocked img_pixels = g_layer_map[input_layer_name].size / norm.channels norm_conf.img_size = int(img_pixels**0.5) config_assert((norm_conf.img_size**2) == img_pixels, "Incorrect input image size %d for input image pixels %d" % (norm_conf.img_size, img_pixels)) norm_conf.output_x = norm_conf.img_size if norm.norm_type in ['cmrnorm-projection']: norm_conf.scale /= norm.size else: norm_conf.scale /= norm.size**2 ''' caffe_mode: compute the output size using floor instead of ceil, which is consistent of caffe and CuDNN's convention. ''' def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False): conv_conf.filter_size = conv.filter_size conv_conf.filter_size_y = conv.filter_size_y conv_conf.channels = conv.channels conv_conf.padding = conv.padding conv_conf.padding_y = conv.padding_y conv_conf.stride = conv.stride conv_conf.stride_y = conv.stride_y conv_conf.groups = conv.groups conv_conf.caffe_mode = conv.caffe_mode if not trans: conv_conf.filter_channels = conv.channels / conv.groups img_pixels = g_layer_map[input_layer_name].size / conv.channels print('channels=%d size=%d' % (conv.channels, g_layer_map[input_layer_name].size)) conv_conf.img_size = int(img_pixels**0.5) config_assert((conv_conf.img_size**2) == img_pixels, ( "Input layer %s: Incorrect input image size %d for input " + "image pixels %d") % (input_layer_name, conv_conf.img_size, img_pixels)) conv_conf.output_x = cnn_output_size( conv_conf.img_size, conv_conf.filter_size, conv_conf.padding, conv_conf.stride, conv_conf.caffe_mode) else: conv_conf.filter_channels = num_filters / conv.groups outputSize = g_layer_map[input_layer_name].size / conv.channels print('channels=%d size=%d' % (conv.channels, g_layer_map[input_layer_name].size)) conv_conf.output_x = int(outputSize**0.5) config_assert((conv_conf.output_x**2) == outputSize, ( "Input layer %s: Incorrect input image size %d for input " + "image pixels %d") % (input_layer_name, conv_conf.output_x, outputSize)) conv_conf.img_size = cnn_image_size( conv_conf.output_x, conv_conf.filter_size, conv_conf.padding, conv_conf.stride, conv_conf.caffe_mode) def parse_block_expand(block_expand, input_layer_name, block_expand_conf): block_expand_conf.channels = block_expand.channels block_expand_conf.stride_x = block_expand.stride_x block_expand_conf.stride_y = block_expand.stride_y block_expand_conf.padding_x = block_expand.padding_x block_expand_conf.padding_y = block_expand.padding_y block_expand_conf.block_x = block_expand.block_x block_expand_conf.block_y = block_expand.block_y block_expand_conf.img_size_x = block_expand.img_size_x block_expand_conf.img_size_y = block_expand.img_size_y if block_expand_conf.img_size_x == 0: block_expand_conf.output_x = 0 else: block_expand_conf.output_x = cnn_output_size( block_expand.img_size_x, block_expand.block_x, block_expand.padding_x, block_expand.stride_x, False) if block_expand_conf.img_size_y == 0: block_expand_conf.output_y = 0 else: block_expand_conf.output_y = cnn_output_size( block_expand.img_size_y, block_expand.block_y, block_expand.padding_y, block_expand.stride_y, False) def parse_maxout(maxout, input_layer_name, maxout_conf): maxout_conf.channels = maxout.channels maxout_conf.groups = maxout.groups maxout_conf.img_size_x = maxout.img_size_x maxout_conf.img_size_y = maxout.img_size_y # Define an evaluator @config_func def Evaluator( name, type, inputs, chunk_scheme=None, num_chunk_types=None, classification_threshold=None, positive_label=None, dict_file=None, result_file=None, num_results=None, delimited=None, ): evaluator = g_config.model_config.evaluators.add() evaluator.type = type evaluator.name = MakeLayerNameInSubmodel(name) if type_of(inputs) == str: inputs = [inputs] evaluator.input_layers.extend( [MakeLayerNameInSubmodel(name) for name in inputs]) if chunk_scheme is not None: evaluator.chunk_scheme = chunk_scheme evaluator.num_chunk_types = num_chunk_types g_current_submodel.evaluator_names.append(evaluator.name) if classification_threshold is not None: evaluator.classification_threshold = classification_threshold if positive_label is not None: evaluator.positive_label = positive_label if dict_file is not None: evaluator.dict_file = dict_file if result_file is not None: evaluator.result_file = result_file if num_results is not None: evaluator.num_results = num_results if delimited is not None: evaluator.delimited = delimited class LayerBase(object): def __init__( self, name, type, size, # size can be 0. In this case, subclass should set it. inputs, device=None, active_type="", drop_rate=0., coeff=None): config_assert('@' not in name, "layer name: %s contain special character @" % name) global g_current_submodel name = MakeLayerNameInSubmodel(name) config_assert(name not in g_layer_map, 'Duplicated layer name: %s' % name) self.inputs = copy.deepcopy(inputs) self.operators = [] if self.inputs is None: self.inputs = [] elif type_of(self.inputs) != list: self.inputs = [self.inputs] self.config = g_config.model_config.layers.add() assert isinstance(self.config, LayerConfig) self.config.name = name self.config.type = type self.config.active_type = active_type if coeff is not None: self.config.coeff = float(coeff) if size != 0: self.config.size = size if drop_rate != 0: self.config.drop_rate = drop_rate if device is not None: self.config.device = device elif g_default_device is not None: self.config.device = g_default_device for input_index in xrange(len(self.inputs)): input = self.inputs[input_index] input_config = None input_layer_name = '' if type_of(input) == str: input_layer_name = input input_config = Input( input_layer_name=input, parameter_name=gen_parameter_name(name, input_index)) input_layer_name = input_config.input_layer_name elif isinstance(input, Input): input_layer_name = input.input_layer_name input_config = input if input_config.parameter_name is None: input_config.parameter_name = \ gen_parameter_name(name, input_index) elif isinstance(input, Operator): self.operators.append(input) input.operator_conf.input_indices.append(input_index) input_config = Input(input.input_layer_names[0]) input_layer_name = input_config.input_layer_name else: raise ValueError('Wrong type for inputs: %s' % type_of(input)) config_assert(input_layer_name in g_layer_map, "Unknown input layer '%s' for layer %s" % (input_layer_name, name)) self.inputs[input_index] = input_config layer_input = self.config.inputs.add() layer_input.input_layer_name = input_config.input_layer_name if input_config.input_layer_argument is not None: layer_input.input_layer_argument = \ input_config.input_layer_argument g_layer_map[name] = self.config g_current_submodel.layer_names.append(self.config.name) def get_input_layer(self, input_index): return g_layer_map[self.config.inputs[input_index].input_layer_name] # will return the bias created if not *for_self* def create_bias_parameter( self, bias, # True/False or BiasCfg size, dims=None, for_self=True, # whether create bias for layer self ): if size == 0: return if dims is None: dims = [1, size] config_assert( type_of(bias) == bool or type_of(bias) == Bias, 'Incorrect type for bias: %s' % type_of(bias)) if type_of(bias) == bool: if bias: bias = Bias() if type_of(bias) == Bias: if bias.parameter_name is None: bias.parameter_name = gen_bias_parameter_name(self.config.name) if bias.parameter_name not in g_parameter_map: assert isinstance(self.config, LayerConfig) Parameter( bias.parameter_name, size, self.config.device if self.config.HasField('device') else None, dims, bias.learning_rate, bias.momentum, decay_rate=bias.decay_rate, decay_rate_l1=bias.decay_rate_l1, initial_mean=bias.initial_mean, initial_std=bias.initial_std, initial_strategy=bias.initial_strategy, initial_smart=bias.initial_smart, num_batches_regularization=bias.num_batches_regularization, sparse_remote_update=bias.sparse_remote_update, gradient_clipping_threshold=bias. gradient_clipping_threshold, is_static=bias.is_static, is_shared=bias.is_shared, ) if for_self: self.config.bias_parameter_name = bias.parameter_name else: return bias.parameter_name def create_input_parameter(self, input_index, size, dims=None, sparse=None, format=None): if dims is None: # TODO(yuyang18): print warning and callstack here! dims = list() if size == 0: return input_config = self.inputs[input_index] self.config.inputs[input_index].input_parameter_name = \ input_config.parameter_name if input_config.parameter_name in g_parameter_map: para = g_parameter_map[input_config.parameter_name] config_assert(size == para.size, ( 'Shared parameter "%s" does not ' + 'have same size: %s vs. %s') % (input_config.parameter_name, para.size, size)) config_assert(dims == para.dims, ( 'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s') % (input_config.parameter_name, para.dims, dims)) return Parameter( input_config.parameter_name, size, self.config.device if self.config.HasField("device") else None, dims, input_config.learning_rate, input_config.momentum, decay_rate=input_config.decay_rate, decay_rate_l1=input_config.decay_rate_l1, initial_mean=input_config.initial_mean, initial_std=input_config.initial_std, initial_strategy=input_config.initial_strategy, initial_smart=input_config.initial_smart, num_batches_regularization=input_config.num_batches_regularization, sparse_remote_update=input_config.sparse_remote_update, sparse_update=input_config.sparse_update, gradient_clipping_threshold=input_config. gradient_clipping_threshold, sparse=sparse, format=format, is_static=input_config.is_static, is_shared=input_config.is_shared, update_hooks=input_config.update_hooks) def set_layer_size(self, size): if self.config.size == 0: self.config.size = size else: config_assert(self.config.size == size, 'Different inputs result in' + 'different layer size at layer %s' % self.config.name) @config_layer('multi_class_cross_entropy_with_selfnorm') class MultiClassCrossEntropySelfNormCostLayer(LayerBase): def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs): super(MultiClassCrossEntropySelfNormCostLayer, self).__init__( name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs) self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha @config_layer('fc') class FCLayer(LayerBase): def __init__(self, name, size, inputs, bias=True, **xargs): super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs) for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) psize = self.config.size * input_layer.size dims = [input_layer.size, self.config.size] format = self.inputs[input_index].format sparse = format == "csr" or format == "csc" if sparse: psize = self.inputs[input_index].nnz else: sparse = None self.create_input_parameter(input_index, psize, dims, sparse, format) self.create_bias_parameter(bias, self.config.size) @config_layer('selective_fc') class SelectiveFCLayer(LayerBase): def __init__(self, name, size, inputs, bias=True, selective_fc_pass_generation=False, has_selected_colums=True, selective_fc_full_mul_ratio=0.02, selective_fc_parallel_plain_mul_thread_num=None, **xargs): super(SelectiveFCLayer, self).__init__( name, 'selective_fc', size, inputs=inputs, **xargs) # user MUST know if selctive fc is used in training, # parameter matrices saved by this layer are automatically transposed, # BUT bias is not. # if selective_fc is used only in testing mode, and parameters for # this layer are trained by fully connected layers, # then TranposedFullMatrixProjectin MUST be used in training # to avoid manual transpose in testing. self.config.selective_fc_pass_generation = selective_fc_pass_generation self.config.has_selected_colums = has_selected_colums self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio if selective_fc_parallel_plain_mul_thread_num is not None: self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num input_num = len(self.inputs) if has_selected_colums: config_assert(input_num >= 2, ("if indices of selected columns are not specified, " "selective_fc Layer has at least two inputs")) input_num -= 1 for input_index in xrange(input_num): input_layer = self.get_input_layer(input_index) psize = self.config.size * input_layer.size dims = [input_layer.size, self.config.size] dims = dims[::-1] # transpose the parameter format = self.inputs[input_index].format sparse = format == "csr" or format == "csc" if sparse: psize = self.inputs[input_index].nnz self.create_input_parameter(input_index, psize, dims, sparse, format) self.create_bias_parameter(bias, self.config.size) @config_layer('print') class PrintLayer(LayerBase): def __init__(self, name, inputs): super(PrintLayer, self).__init__(name, 'print', 0, inputs) @config_layer('data') class DataLayer(LayerBase): def __init__(self, name, size, device=None): super(DataLayer, self).__init__( name, 'data', size, inputs=[], device=device) ''' DataNormLayer: A layer for data normalization Input: One and only one input layer is accepted. The input layer must be DataLayer with dense data type Output: The normalization of the input data Reference: LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine Example: Layer( name = "norm_input_layer", type = "data_norm", inputs = [Input("input_layer", parameter_name = "_slot0.stats")], data_norm_strategy = "z-score", ) Note: (1) The parameter has been calculated in the preprocessing stage, and should be initialized by --init_model_path when training. (2) Three data normalization methoeds are considered z-score: y = (x-mean)/std min-max: y = (x-min)/(max-min) decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1 ''' @config_layer('data_norm') class DataNormLayer(LayerBase): def __init__(self, name, inputs, data_norm_strategy="z-score", device=None): super(DataNormLayer, self).__init__( name, 'data_norm', 0, inputs=inputs, device=device) self.config.data_norm_strategy = data_norm_strategy config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input') input_layer = self.get_input_layer(0) self.set_layer_size(input_layer.size) para_size = 5 * input_layer.size para_dims = [5, input_layer.size] self.inputs[0].is_static = True self.create_input_parameter(0, para_size, para_dims) @config_layer('prelu') class ParameterReluLayer(LayerBase): layer_type = 'prelu' def __init__(self, name, inputs, partial_sum=1, **args): super(ParameterReluLayer, self).__init__( name, self.layer_type, 0, inputs=inputs, **args) config_assert(len(self.inputs) == 1) config_assert(self.input_layer.size % partial_sum == 0) input_layer = self.get_input_layer(0) self.set_layer_size(input_layer.size) self.create_input_parameter(0, input_layer.size / partial_sum) @config_layer('conv') class ConvLayerBase(LayerBase): layer_type = 'conv' def __init__(self, name, inputs=[], bias=True, num_filters=None, shared_biases=False, **xargs): super(ConvLayerBase, self).__init__( name, self.layer_type, 0, inputs=inputs, **xargs) if num_filters is not None: self.config.num_filters = num_filters use_gpu = int(g_command_config_args.get("use_gpu", 0)) parallel_nn = int(g_command_config_args.get("parallel_nn", 0)) # Automatically select cudnn_type for GPU and exconv for CPU # if set type=conv, but still reserve the way user specify # exconv or cudnn_conv manually. if self.layer_type == "cudnn_conv": config_assert(use_gpu, "cudnn_conv only support GPU") if (use_gpu == 1 and self.layer_type != "exconv" and (parallel_nn == 0 or self.config.device > -1)): self.layer_type = "cudnn_conv" else: self.layer_type = "exconv" # need to specify layer in config self.config.type = self.layer_type if shared_biases is not None: self.config.shared_biases = shared_biases for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) parse_conv(self.inputs[input_index].conv, input_layer.name, self.config.inputs[input_index].conv_conf, num_filters) conv_conf = self.config.inputs[input_index].conv_conf psize = self.calc_parameter_size(conv_conf) print("output size for %s is %d " % (name, conv_conf.output_x)) self.create_input_parameter(input_index, psize) self.set_layer_size( (conv_conf.output_x**2) * self.config.num_filters) psize = self.config.size if shared_biases: psize = self.config.num_filters self.create_bias_parameter(bias, psize, [psize, 1]) def calc_parameter_size(self, conv_conf): return self.config.num_filters * conv_conf.filter_channels \ * (conv_conf.filter_size * conv_conf.filter_size_y) @config_layer('exconv') class ConvLayer(ConvLayerBase): layer_type = 'exconv' @config_layer('cudnn_conv') class ConvLayer(ConvLayerBase): layer_type = 'cudnn_conv' @config_layer('convt') class ConvTransLayerBase(LayerBase): layer_type = 'convt' def __init__(self, name, inputs=[], bias=True, num_filters=None, shared_biases=False, **xargs): super(ConvTransLayerBase, self).__init__( name, self.layer_type, 0, inputs=inputs, **xargs) if num_filters is not None: self.config.num_filters = num_filters use_gpu = int(g_command_config_args.get("use_gpu", 0)) parallel_nn = int(g_command_config_args.get("parallel_nn", 0)) # cudnn_convt has not been implemented so use exconvt only self.layer_type = "exconvt" # need to specify layer in config self.config.type = self.layer_type if shared_biases is not None: self.config.shared_biases = shared_biases for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) parse_conv( self.inputs[input_index].conv, input_layer.name, self.config.inputs[input_index].conv_conf, num_filters, trans=True) conv_conf = self.config.inputs[input_index].conv_conf psize = self.calc_parameter_size(conv_conf) print("output size for %s is %d " % (name, conv_conf.output_x)) self.create_input_parameter(input_index, psize) self.set_layer_size( (conv_conf.img_size**2) * self.config.num_filters) psize = self.config.size if shared_biases: psize = self.config.num_filters self.create_bias_parameter(bias, psize, [psize, 1]) def calc_parameter_size(self, conv_conf): return conv_conf.channels * conv_conf.filter_channels \ * (conv_conf.filter_size * conv_conf.filter_size_y) @config_layer('exconvt') class ConvTransLayer(ConvTransLayerBase): layer_type = 'exconvt' @config_layer('norm') class NormLayer(LayerBase): def __init__(self, name, inputs, device=None): super(NormLayer, self).__init__( name, 'norm', 0, inputs=inputs, device=device) for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) parse_norm(self.inputs[input_index].norm, input_layer.name, self.config.inputs[input_index].norm_conf) norm_conf = self.config.inputs[input_index].norm_conf self.set_layer_size((norm_conf.output_x**2) * norm_conf.channels) @config_layer('pool') class PoolLayer(LayerBase): def __init__(self, name, inputs, device=None): super(PoolLayer, self).__init__( name, 'pool', 0, inputs=inputs, device=device) for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) parse_pool(self.inputs[input_index].pool, input_layer.name, self.config.inputs[input_index].pool_conf) pool_conf = self.config.inputs[input_index].pool_conf print("output size for %s is %d*%d " % (name, pool_conf.output_y, pool_conf.output_x)) self.set_layer_size( (pool_conf.output_x * pool_conf.output_y) * pool_conf.channels) @config_layer('spp') class SpatialPyramidPoolLayer(LayerBase): def __init__(self, name, inputs, device=None): super(SpatialPyramidPoolLayer, self).__init__( name, 'spp', 0, inputs=inputs, device=device) for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) parse_spp(self.inputs[input_index].spp, input_layer.name, self.config.inputs[input_index].spp_conf) spp_conf = self.config.inputs[input_index].spp_conf output_size = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1) print("output size for %s is %d " % (name, output_size)) self.set_layer_size(output_size * spp_conf.channels) @config_layer('batch_norm') class BatchNormLayer(LayerBase): layer_type = 'batch_norm' def __init__(self, name, inputs, active_type="linear", bias=True, device=None, use_global_stats=True, moving_average_fraction=0.9, batch_norm_type=None, **xargs): if inputs is None: inputs = [] elif not isinstance(inputs, list): inputs = [inputs] config_assert( len(inputs) == 1, "BatchNormLayer must have one and only one input") # Create Input for moving mean and std, # in batch normalization layer. # These paras no need to update, so set is_static is true. # If not use is_static, even set learning_rate = 0, decay_rate = 0, # these paras will change if set average_window in configure. use_gpu = bool(int(g_command_config_args.get("use_gpu", 0))) is_shared = True if not use_gpu else False for i in xrange(2): inputs.append( Input( inputs[0].input_layer_name, initial_std=0.0, initial_mean=0.0, is_static=True, is_shared=is_shared, )) parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0))) cudnn_version = int(g_command_config_args.get("cudnn_version", 0)) # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU. # Also based on cudnn version. use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \ ((not parallel_nn) or self.config.device > -1) and \ cudnn_version >= 4007 self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm" super(BatchNormLayer, self).__init__( name, self.layer_type, 0, active_type=active_type, inputs=inputs, device=device, **xargs) if use_global_stats is not None: self.config.use_global_stats = use_global_stats if moving_average_fraction is not None: self.config.moving_average_fraction = moving_average_fraction input_layer = self.get_input_layer(0) parse_image(self.inputs[0].image, input_layer.name, self.config.inputs[0].image_conf) image_conf = self.config.inputs[0].image_conf self.set_layer_size((image_conf.img_size**2) * image_conf.channels) psize = self.calc_parameter_size(image_conf) dims = [1, psize] self.create_input_parameter(0, psize) self.create_input_parameter(1, psize, dims) self.create_input_parameter(2, psize, dims) self.create_bias_parameter(bias, psize) def calc_parameter_size(self, image_conf): return image_conf.channels @config_layer('trans') class TransLayer(LayerBase): def __init__(self, name, inputs, device=None): super(TransLayer, self).__init__( name, 'trans', 0, inputs=inputs, device=device) config_assert( len(self.inputs) == 1, 'TransLayer must have one and only one input') self.set_layer_size(self.get_input_layer(0).size) @config_layer('resize') class ResizeLayer(LayerBase): def __init__(self, name, size, inputs, device=None): super(ResizeLayer, self).__init__( name, 'resize', size=size, inputs=inputs, device=device) config_assert( len(self.inputs) == 1, 'ResizeLayer must have one and only one input') @config_layer('blockexpand') class BlockExpandLayer(LayerBase): def __init__(self, name, inputs, device=None): super(BlockExpandLayer, self).__init__( name, 'blockexpand', 0, inputs=inputs, device=device) for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) parse_block_expand( self.inputs[input_index].block_expand, input_layer.name, self.config.inputs[input_index].block_expand_conf) block_expand_conf = self.config.inputs[ input_index].block_expand_conf self.set_layer_size(block_expand_conf.block_x * block_expand_conf.block_y * block_expand_conf.channels) @config_layer('maxout') class MaxOutLayer(LayerBase): def __init__(self, name, inputs, **xargs): super(MaxOutLayer, self).__init__( name, 'maxout', 0, inputs=inputs, **xargs) input_layer = self.get_input_layer(0) parse_maxout(self.inputs[0].maxout, input_layer.name, self.config.inputs[0].maxout_conf) maxout_conf = self.config.inputs[0].maxout_conf self.set_layer_size(g_layer_map[input_layer.name].size / maxout_conf.groups) # key: cost type # value: cost class g_cost_map = {} # define a cost layer without any parameters def define_cost(class_name, cost_type): def init(cls, name, inputs, device=None, coeff=1.): super(type(cls), cls).__init__( name, cost_type, 1, inputs, device=device, coeff=coeff) cls = type(class_name, (LayerBase, ), dict(__init__=init)) global g_cost_map g_cost_map[cost_type] = cls define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy') define_cost('RankingCost', 'rank-cost') define_cost('AucValidation', 'auc-validation') define_cost('PnpairValidation', 'pnpair-validation') define_cost('SumOfSquaresCostLayer', 'square_error') define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy') define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy') define_cost('HuberTwoClass', 'huber') define_cost('SumCost', 'sum_cost') @config_layer('hsigmoid') class HierarchicalSigmoidLayer(LayerBase): def __init__(self, name, num_classes, inputs, device=None, bias=True): super(HierarchicalSigmoidLayer, self).__init__( name, 'hsigmoid', 1, inputs=inputs, device=device) config_assert( len(self.inputs) >= 2, 'HierarchicalSigmoidLayer must have at least 2 inputs') self.config.num_classes = num_classes for input_index in xrange(len(self.inputs) - 1): input_layer = self.get_input_layer(input_index) psize = (num_classes - 1) * input_layer.size dims = [num_classes - 1, input_layer.size] self.create_input_parameter(input_index, psize, dims) self.create_bias_parameter(bias, num_classes - 1) ''' lambdaCost for lambdaRank LTR approach Usage: Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8, max_sort_size = -1, inputs = ["output", "score"]) Input data: Samples of the same query should be loaded as a sequence, by ProtoDataProvider or PyDataProvider etc.. User should provide scores for each sample. The score slot should be the 2nd input of lambdaRank layer. NDCG_num = the size of NDCG, e.g., 5 for NDCG@5. Note: NDCG_num must be less than or equal to the minimum size of lists. max_sort_size = the size of partial sorting in calculating gradient. Note: If max_sort_size = -1, then for each list, the algorithm will sort the entire list to get gradient. In other cases, max_sort_size must be greater than or equal to NDCG_num. max_sort_size can be greater than the size of a list, in which case the algorithm will sort the entire list to get gradient. ''' @config_layer('lambda_cost') class LambdaCost(LayerBase): def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None): super(LambdaCost, self).__init__( name, 'lambda_cost', 1, inputs=inputs, device=device) config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs') self.config.NDCG_num = NDCG_num if max_sort_size != -1: config_assert( NDCG_num <= max_sort_size, 'NDCG_num must be less than or equal to max_sort_size') self.config.max_sort_size = max_sort_size @config_layer('nce') class NCELayer(LayerBase): def __init__(self, name, num_classes, inputs, num_neg_samples=10, neg_sampling_dist=None, bias=True, **xargs): super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs) config_assert( len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs') self.config.num_classes = num_classes if neg_sampling_dist is not None: config_assert( len(neg_sampling_dist) == num_classes, 'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' % (len(neg_sampling_dist), num_classes)) s = sum(neg_sampling_dist) config_assert( abs(s - 1) < 1e-5, 'The sum of neg_sampling_dist (%s) is not 1' % s) self.config.neg_sampling_dist.extend(neg_sampling_dist) self.config.num_neg_samples = num_neg_samples num_real_inputs = len(self.inputs) - 1 input_layer = self.get_input_layer(num_real_inputs) config_assert(input_layer.type == 'data', 'Expecting the last input layer of an nce layer to be ' 'a data layer') if (num_real_inputs > 1 and input_layer.size == 1 and self.get_input_layer(num_real_inputs - 1).type == 'data'): # This input layer is assumed to be a sample weight layer num_real_inputs -= 1 for input_index in xrange(num_real_inputs): input_layer = self.get_input_layer(input_index) psize = num_classes * input_layer.size dims = [num_classes, input_layer.size] self.create_input_parameter(input_index, psize, dims) self.create_bias_parameter(bias, num_classes) @config_layer('addto') class AddToLayer(LayerBase): def __init__(self, name, inputs, bias=True, **xargs): super(AddToLayer, self).__init__( name, 'addto', 0, inputs=inputs, **xargs) config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer') for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) self.set_layer_size(input_layer.size) self.create_bias_parameter(bias, self.config.size) @config_layer('agent') class AgentLayer(LayerBase): def __init__(self, name, size, device=None): super(AgentLayer, self).__init__( name, 'agent', size, inputs=[], device=device) @config_layer('sequence_agent') class SequenceAgentLayer(LayerBase): def __init__(self, name, size, device=None): super(SequenceAgentLayer, self).__init__( name, 'sequence_agent', size, inputs=[], device=device) @config_layer('gather_agent') class GatherAgentLayer(LayerBase): def __init__(self, name, size, device=None): super(GatherAgentLayer, self).__init__( name, 'gather_agent', size, inputs=[], device=device) @config_layer('scatter_agent') class ScatterAgentLayer(LayerBase): def __init__(self, name, size, device=None): super(ScatterAgentLayer, self).__init__( name, 'scatter_agent', size, inputs=[], device=device) @config_layer('sequence_gather_agent') class SequenceGatherAgentLayer(LayerBase): def __init__(self, name, size, device=None): super(SequenceGatherAgentLayer, self).__init__( name, 'sequence_gather_agent', size, inputs=[], device=device) @config_layer('sequence_scatter_agent') class SequenceScatterAgentLayer(LayerBase): def __init__(self, name, size, device=None): super(SequenceScatterAgentLayer, self).__init__( name, 'sequence_scatter_agent', size, inputs=[], device=device) @config_layer('multiplex') class MultiplexLayer(LayerBase): def __init__(self, name, inputs, size, device=None): super(MultiplexLayer, self).__init__( name, 'multiplex', size, inputs=inputs, device=device) config_assert( len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.') for i in range(1, len(inputs)): config_assert( self.get_input_layer(i).size == size, "All the input layers except the first one should" "have the same size as the MultiplexLayer.") @config_func def Link( name, has_subseq=False, ): link_config = LinkConfig() link_config.link_name = name link_config.has_subseq = has_subseq return link_config # memory for recurrent layer group. # *name* and *size* are actual layer's name and size. # will return name of the memory, # use this name if you assign the memory as other layer's input # # boot frame of memory is zeroed by default, # or initialize by boot layer output if *boot_layer* set, # or initialize by trainable bias if *boot_bias* set, # or initialize by a constant id if *boot_with_const_id* set # # Memory can be a sequence if *is_sequence* set, this type of memory # can only be initailized by a *boot_layer* which is a sequence. # @config_func def Memory( name, size, is_sequence=False, boot_layer=None, boot_bias=False, boot_bias_active_type="", boot_with_const_id=None, ): agent_name = name + "+delay1" if is_sequence: agent_layer = SequenceAgentLayer(agent_name, size) else: agent_layer = AgentLayer(agent_name, size) config_assert(g_current_submodel.is_recurrent_layer_group, 'Memory should be used in recurrent layer group only') memory = g_current_submodel.memories.add() memory.layer_name = MakeLayerNameInSubmodel(name) memory.link_name = MakeLayerNameInSubmodel(agent_name) memory.is_sequence = is_sequence options = sum((boot_layer is not None, bool(boot_bias), boot_with_const_id is not None)) config_assert( options <= 1, 'take one option at most from boot_layer, boot_bias, or boot_with_const_id' ) if boot_layer is not None: boot_layer = MakeLayerNameInParentSubmodel(boot_layer) config_assert(boot_layer in g_layer_map, 'boot_layer "%s" does not correspond to a layer name' % boot_layer) memory.boot_layer_name = boot_layer elif boot_bias: memory.boot_bias_parameter_name = agent_layer.create_bias_parameter( boot_bias, size, for_self=False) memory.boot_bias_active_type = boot_bias_active_type elif boot_with_const_id is not None: memory.boot_with_const_id = boot_with_const_id return agent_name # Generator for recurrent layer group, to use it: # 1. define a id layer as output of layer group # 2. define a memory of this id layer, and assign a boot id(begin of sequence) # 3. define a eos check layer and fill its name in generator's *eos_layer_name* # Sequence generation will stop when eos check return 1 or *max_num_frames* reached. # If *beam_size* is greater than one, generator will use beam search. # in beam search, if *num_results_per_sample* set, one sample sequence can output # multiple results each with a probility. @config_func def Generator( max_num_frames, eos_layer_name="eos_check", num_results_per_sample=1, beam_size=1, log_prob=None, ): generator_config = GeneratorConfig() generator_config.max_num_frames = max_num_frames generator_config.eos_layer_name = eos_layer_name generator_config.num_results_per_sample = num_results_per_sample generator_config.beam_size = beam_size if log_prob is not None: generator_config.log_prob = log_prob return generator_config @config_layer('expand') class ExpandLayer(LayerBase): def __init__(self, name, inputs, trans_type='non-seq', device=None, bias=False): super(ExpandLayer, self).__init__( name, 'expand', 0, inputs=inputs, device=device) config_assert( len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs') self.config.trans_type = trans_type for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) self.set_layer_size(self.get_input_layer(0).size) self.create_bias_parameter(bias, self.config.size) @config_layer('featmap_expand') class FeatMapExpandLayer(LayerBase): def __init__(self, name, inputs, device=None, num_filters=None, bias=False): super(FeatMapExpandLayer, self).__init__( name, 'featmap_expand', 0, inputs=inputs, device=device) config_assert( len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs') if num_filters is not None: self.config.num_filters = num_filters else: logger.fatal("FeatMapExpandLayer must specify num_filters.") self.set_layer_size(self.get_input_layer(0).size * num_filters) @config_layer('max') class MaxLayer(LayerBase): def __init__(self, name, inputs, trans_type='non-seq', active_type='linear', device=None, bias=False, output_max_index=None): super(MaxLayer, self).__init__( name, 'max', 0, inputs=inputs, device=device) config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input') self.config.trans_type = trans_type self.config.active_type = active_type for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) self.set_layer_size(input_layer.size) self.create_bias_parameter(bias, self.config.size) if output_max_index is not None: self.config.output_max_index = output_max_index @config_layer('maxid') class MaxIdLayer(LayerBase): def __init__(self, name, inputs, beam_size=None, device=None): super(MaxIdLayer, self).__init__( name, 'maxid', 0, inputs=inputs, device=device) config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input') for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) self.set_layer_size(input_layer.size) if beam_size is None: global g_current_submodel if g_current_submodel.HasField("generator"): self.config.beam_size = g_current_submodel.generator.beam_size else: self.config.beam_size = beam_size @config_layer('eos_id') class EosIdLayer(LayerBase): def __init__(self, name, inputs, eos_id, device=None): super(EosIdLayer, self).__init__( name, 'eos_id', 0, inputs=inputs, device=device) config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input') self.set_layer_size(2) # boolean output self.config.eos_id = eos_id @config_layer('seqlastins') class SequenceLastInstanceLayer(LayerBase): def __init__(self, name, inputs, active_type='linear', trans_type='non-seq', device=None, bias=False): super(SequenceLastInstanceLayer, self).__init__( name, 'seqlastins', 0, inputs=inputs, device=device, active_type=active_type) config_assert( len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input') self.config.trans_type = trans_type for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) self.set_layer_size(input_layer.size) self.create_bias_parameter(bias, self.config.size) @config_layer('seqfirstins') class SequenceFirstInstanceLayer(SequenceLastInstanceLayer): def __init__( self, name, inputs, active_type='linear', trans_type='non-seq', device=None, bias=False, ): super(SequenceFirstInstanceLayer, self).__init__( name, inputs=inputs, active_type=active_type, device=device, bias=bias) self.config.trans_type = trans_type self.config.select_first = True @config_layer('seqconcat') class SequenceConcatLayer(LayerBase): def __init__(self, name, inputs, active_type='linear', device=None, bias=False): super(SequenceConcatLayer, self).__init__( name, 'seqconcat', 0, inputs=inputs, device=device, active_type=active_type) config_assert( len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs') for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) self.set_layer_size(input_layer.size) self.create_bias_parameter(bias, self.config.size) @config_layer('seqreshape') class SequenceReshapeLayer(LayerBase): def __init__(self, name, size, inputs, active_type='linear', device=None, bias=False): super(SequenceReshapeLayer, self).__init__( name, 'seqreshape', size, inputs=inputs, device=device, active_type=active_type) config_assert( len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs') self.set_layer_size(size) self.create_bias_parameter(bias, size) @config_layer('subseq') class SubSequenceLayer(LayerBase): def __init__(self, name, inputs, active_type='linear', device=None, bias=False): super(SubSequenceLayer, self).__init__( name, 'subseq', 0, inputs=inputs, device=device, active_type=active_type) config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs') input_layer0 = self.get_input_layer(0) size = input_layer0.size self.set_layer_size(size) self.create_bias_parameter(bias, size) @config_layer('out_prod') class OuterProdLayer(LayerBase): def __init__(self, name, inputs, device=None): super(OuterProdLayer, self).__init__( name, 'out_prod', 0, inputs=inputs, device=device) config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs') input_layer0 = self.get_input_layer(0) input_layer1 = self.get_input_layer(1) self.set_layer_size(input_layer0.size * input_layer1.size) @config_layer('power') class PowerLayer(LayerBase): def __init__(self, name, inputs, device=None): super(PowerLayer, self).__init__( name, 'power', 0, inputs=inputs, device=device) config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs') input_layer1 = self.get_input_layer(1) self.set_layer_size(input_layer1.size) input_layer0 = self.get_input_layer(0) config_assert(1 == input_layer0.size, 'The left input is the exponent and should be of size 1') @config_layer('slope_intercept') class SlopeInterceptLayer(LayerBase): def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None): super(SlopeInterceptLayer, self).__init__( name, 'slope_intercept', 0, inputs=inputs, device=device) self.config.slope = slope self.config.intercept = intercept config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input') input_layer0 = self.get_input_layer(0) self.set_layer_size(input_layer0.size) @config_layer('scaling') class ScalingLayer(LayerBase): def __init__(self, name, inputs, device=None): super(ScalingLayer, self).__init__( name, 'scaling', 0, inputs=inputs, device=device) config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs') input_layer1 = self.get_input_layer(1) self.set_layer_size(input_layer1.size) input_layer0 = self.get_input_layer(0) config_assert(1 == input_layer0.size, 'The left input should be of size 1') @config_layer('conv_shift') class ConvShiftLayer(LayerBase): def __init__(self, name, inputs, device=None): super(ConvShiftLayer, self).__init__( name, 'conv_shift', 0, inputs=inputs, device=device) config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs') input_layer0 = self.get_input_layer(0) self.set_layer_size(input_layer0.size) @config_layer('convex_comb') class ConvexCombinationLayer(LayerBase): def __init__(self, name, size, inputs, device=None): super(ConvexCombinationLayer, self).__init__( name, 'convex_comb', size, inputs=inputs, device=device) config_assert( len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs') config_assert( size * self.get_input_layer(0).size == self.get_input_layer(1).size, 'Wrong input size for ConvexCombinationLayer') self.set_layer_size(size) @config_layer('interpolation') class InterpolationLayer(LayerBase): def __init__(self, name, inputs, device=None): super(InterpolationLayer, self).__init__( name, 'interpolation', 0, inputs=inputs, device=device) config_assert( len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs') input_layer0 = self.get_input_layer(0) input_layer1 = self.get_input_layer(1) input_layer2 = self.get_input_layer(2) self.set_layer_size(input_layer1.size) config_assert(input_layer0.size == 1, 'weight should be of size 1') config_assert(input_layer1.size == input_layer2.size, 'the two vector inputs should be of the same size') @config_layer('bilinear_interp') class BilinearInterpLayer(LayerBase): def __init__(self, name, inputs, **xargs): super(BilinearInterpLayer, self).__init__( name, 'bilinear_interp', 0, inputs=inputs, **xargs) input_layer = self.get_input_layer(0) parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, self.config.inputs[0].bilinear_interp_conf) conf = self.inputs[0].bilinear_interp self.set_layer_size(conf.out_size_x * conf.out_size_y * conf.num_channels) @config_layer('sum_to_one_norm') class SumToOneNormLayer(LayerBase): def __init__(self, name, inputs, device=None): super(SumToOneNormLayer, self).__init__( name, 'sum_to_one_norm', 0, inputs=inputs, device=device) config_assert( len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input') input_layer0 = self.get_input_layer(0) self.set_layer_size(input_layer0.size) @config_layer('cos_vm') class CosSimVecMatLayer(LayerBase): def __init__(self, name, size, inputs, cos_scale=1.0, device=None): super(CosSimVecMatLayer, self).__init__( name, 'cos_vm', size, inputs=inputs, device=device) self.config.cos_scale = cos_scale config_assert( len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs') config_assert( size * self.get_input_layer(0).size == self.get_input_layer(1).size, 'Wrong input size for CosSimVecMatLayer') @config_layer('sampling_id') class SamplingIdLayer(LayerBase): def __init__(self, name, inputs, device=None): super(SamplingIdLayer, self).__init__( name, 'sampling_id', 0, inputs=inputs, device=device) config_assert( len(self.inputs) == 1, 'SamplingIdLayer must have 1 input') for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) self.set_layer_size(input_layer.size) # AverageLayer: "average" for each sample within a sequence. # average_stratrgy: set to one of the following: # 'average': plain average. # 'sum': sum each sample instead of average (which is divide by sample_num). # 'squarerootn': sum each sample, but divide by sqrt(sample_num). @config_layer('average') class AverageLayer(LayerBase): def __init__(self, name, inputs, average_strategy='average', trans_type='non-seq', active_type='linear', device=None, bias=False): super(AverageLayer, self).__init__( name, 'average', 0, inputs=inputs, device=device, active_type=active_type) self.config.average_strategy = average_strategy self.config.trans_type = trans_type config_assert(len(inputs) == 1, 'AverageLayer must have 1 input') for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) self.set_layer_size(input_layer.size) self.create_bias_parameter(bias, self.config.size) @config_layer('cos') class CosSimLayer(LayerBase): def __init__(self, name, inputs, cos_scale=5, device=None): super(CosSimLayer, self).__init__( name, 'cos', 1, inputs=inputs, device=device) config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs') config_assert( self.get_input_layer(0).size == self.get_input_layer(1).size, 'inputs of CosSimLayer must have same dim') self.config.cos_scale = cos_scale @config_layer('tensor') class TensorLayer(LayerBase): def __init__(self, name, size, inputs, device=None, bias=True, **xargs): super(TensorLayer, self).__init__( name, 'tensor', size, inputs=inputs, device=device, **xargs) config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs') config_assert(size > 0, 'size must be positive') config_assert(inputs[1].parameter_name == None, 'second parameter should be None.') input_layer0 = self.get_input_layer(0) input_layer1 = self.get_input_layer(1) psize = size * input_layer0.size * input_layer1.size dims = [input_layer0.size, input_layer1.size, size] self.create_input_parameter(0, psize, dims) self.create_bias_parameter(bias, size) @config_layer('mixed') class MixedLayer(LayerBase): def __init__(self, name, inputs, size=0, bias=True, error_clipping_threshold=None, **xargs): config_assert(inputs, 'inputs cannot be empty') super(MixedLayer, self).__init__( name, 'mixed', size, inputs=inputs, **xargs) operator_input_index = [] for operator in self.operators: operator_conf = operator.operator_conf for i in xrange(1, len(operator.input_layer_names)): input_index = len(self.config.inputs) operator_conf.input_indices.append(input_index) input_config = Input(operator.input_layer_names[i]) self.inputs.append(input_config) layer_input = self.config.inputs.add() layer_input.input_layer_name = input_config.input_layer_name for input_index in operator_conf.input_indices: input_layer = self.get_input_layer(input_index) operator_conf.input_sizes.append(input_layer.size) operator_input_index.append(input_index) if self.config.size == 0: size = operator.calc_output_size(operator_conf.input_sizes) if size != 0: self.set_layer_size(size) else: sz = operator.calc_output_size(operator_conf.input_sizes) if sz != 0: config_assert( sz == self.config.size, "different inputs have different size: %s vs. %s" % (sz, self.config.size)) for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) input = self.inputs[input_index] if input_index not in operator_input_index: config_assert( isinstance(input, Projection), "input should be projection or operation") if self.config.size == 0 and isinstance(input, Projection): size = input.calc_output_size(input_layer) if size != 0: self.set_layer_size(size) elif isinstance(input, Projection): sz = input.calc_output_size(input_layer) if sz != 0: config_assert( sz == self.config.size, "different inputs have different size: %s vs. %s" % (sz, self.config.size)) config_assert(size != 0, "size is not set") for input_index in xrange(len(self.inputs)): input = self.inputs[input_index] if isinstance(input, Projection): input_layer = self.get_input_layer(input_index) input.proj_conf.input_size = input_layer.size input.proj_conf.output_size = size input_config = self.config.inputs[input_index] input_config.proj_conf.CopyFrom(input.proj_conf) input_config.proj_conf.name = gen_parameter_name(name, input_index) psize = input.calc_parameter_size(input_layer.size, size) dims = input.calc_parameter_dims(input_layer.size, size) self.create_input_parameter(input_index, psize, dims) for operator in self.operators: operator_conf = operator.operator_conf operator_conf.output_size = self.config.size operator.check_dims() record_operator_conf = self.config.operator_confs.add() record_operator_conf.CopyFrom(operator_conf) psize = self.config.size if isinstance(self.inputs[0], ConvProjection): self.config.shared_biases = True psize = 0 for input in self.inputs: psize += input.calc_bias_size() if bias: self.config.bias_size = psize self.create_bias_parameter(bias, psize) if error_clipping_threshold is not None: self.config.error_clipping_threshold = error_clipping_threshold # like MixedLayer, but no bias parameter @config_func def ExpressionLayer(name, inputs, **xargs): MixedLayer(name, inputs, bias=False, **xargs) @config_layer('concat') class ConcatenateLayer(LayerBase): def __init__(self, name, inputs, bias=False, **xargs): config_assert(inputs, 'inputs cannot be empty') config_assert(not bias, 'ConcatenateLayer cannot support bias.') super(ConcatenateLayer, self).__init__( name, 'concat', 0, inputs=inputs, **xargs) size = 0 for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) input = self.inputs[input_index] if self.config.size == 0: size += input_layer.size self.set_layer_size(size) # like concat layer, but each input layer was processed by a Projection. @config_layer('concat2') class ConcatenateLayer2(LayerBase): def __init__(self, name, inputs, bias=False, **xargs): config_assert(inputs, 'inputs cannot be empty') super(ConcatenateLayer2, self).__init__( name, 'concat2', 0, inputs=inputs, **xargs) if isinstance(self.inputs[0], ConvProjection): for input_index in xrange(len(self.inputs) - 1): input = self.inputs[input_index + 1] config_assert( isinstance(input, ConvProjection), "The first input of ConcatenateLayer2 is ConvProjection, " "the other inputs should also be ConvProjection.") size = 0 for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) input = self.inputs[input_index] output_size = input.calc_output_size(input_layer) config_assert(output_size != 0, "proj output size is not set") size += output_size self.set_layer_size(size) for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) input = self.inputs[input_index] input.proj_conf.input_size = input_layer.size input.proj_conf.output_size = input.calc_output_size(input_layer) input_config = self.config.inputs[input_index] input_config.proj_conf.CopyFrom(input.proj_conf) input_config.proj_conf.name = gen_parameter_name(name, input_index) psize = input.calc_parameter_size(input.proj_conf.input_size, input.proj_conf.output_size) dims = input.calc_parameter_dims(input.proj_conf.input_size, input.proj_conf.output_size) self.create_input_parameter(input_index, psize, dims) psize = self.config.size if isinstance(self.inputs[0], ConvProjection): self.config.shared_biases = True psize = 0 for input in self.inputs: psize += input.calc_bias_size() if bias: self.config.bias_size = psize self.create_bias_parameter(bias, psize) @config_layer('recurrent') class RecurrentLayer(LayerBase): def __init__(self, name, inputs, reversed=False, bias=True, **xargs): super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs, **xargs) config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input') input_layer = self.get_input_layer(0) size = input_layer.size self.set_layer_size(size) self.config.reversed = reversed dims = [size, size] self.create_input_parameter(0, size * size, dims) self.create_bias_parameter(bias, self.config.size) @config_layer('lstmemory') class LstmLayer(LayerBase): def __init__(self, name, inputs, reversed=False, active_gate_type="sigmoid", active_state_type="sigmoid", bias=True, **xargs): super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs) config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input') input_layer = self.get_input_layer(0) #check input_layer.size is divided by 4 config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!") size = input_layer.size / 4 self.set_layer_size(size) self.config.reversed = reversed self.config.active_gate_type = active_gate_type self.config.active_state_type = active_state_type self.create_input_parameter(0, size * size * 4, [size, size, 4]) #bias includes 3 kinds of peephole, 4 + 3 = 7 self.create_bias_parameter(bias, size * 7) @config_layer('lstm_step') class LstmStepLayer(LayerBase): def __init__(self, name, size, inputs, active_gate_type="sigmoid", active_state_type="sigmoid", bias=True, **xargs): super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs, **xargs) config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs') input_layer0 = self.get_input_layer(0) input_layer1 = self.get_input_layer(1) config_assert(input_layer0.size == 4 * size, 'input_layer0.size != 4 * layer.size') config_assert(input_layer1.size == size, 'input_layer1.size != layer.size') self.config.active_gate_type = active_gate_type self.config.active_state_type = active_state_type self.create_bias_parameter(bias, size * 3) # get the specific output from the input layer. @config_layer('get_output') class GetOutputLayer(LayerBase): def __init__(self, name, size, inputs): super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs) config_assert( len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs') inputs = self.inputs[0] config_assert(inputs.input_layer_argument, 'input_layer_argument cannot be empty') @config_layer('mdlstmemory') class MDLstmLayer(LayerBase): def __init__(self, name, inputs, directions=True, active_gate_type="sigmoid", active_state_type="sigmoid", bias=True, **xargs): super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs, **xargs) config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input') input_layer = self.get_input_layer(0) dim_num = len(directions) #check input_layer.size is divided by (3+dim_num) config_assert(input_layer.size % (3 + dim_num) == 0, "size % (dim_num) should be 0!") size = input_layer.size / (3 + dim_num) self.set_layer_size(size) self.config.active_gate_type = active_gate_type self.config.active_state_type = active_state_type for i in xrange(len(directions)): self.config.directions.append(int(directions[i])) self.create_input_parameter(0, size * size * (3 + dim_num), [size, size, 3 + dim_num]) #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num self.create_bias_parameter(bias, size * (5 + 2 * dim_num)) @config_layer('gated_recurrent') class GatedRecurrentLayer(LayerBase): def __init__(self, name, inputs, reversed=False, active_gate_type="sigmoid", bias=True, **xargs): super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0, inputs, **xargs) config_assert( len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input') input_layer = self.get_input_layer(0) #check input_layer.size is divided by 3 config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!") size = input_layer.size / 3 self.set_layer_size(size) self.config.reversed = reversed self.config.active_gate_type = active_gate_type self.create_input_parameter(0, size * size * 3, [size, size * 3]) self.create_bias_parameter(bias, size * 3) @config_layer('gru_step') class GruStepLayer(LayerBase): def __init__(self, name, size, inputs, active_gate_type="sigmoid", bias=True, **xargs): super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs, **xargs) config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input') input_layer0 = self.get_input_layer(0) input_layer1 = self.get_input_layer(1) config_assert(input_layer0.size == 3 * size, 'input_layer0.size != 3 * layer.size') config_assert(input_layer1.size == size, 'input_layer1.size != layer.size') self.config.active_gate_type = active_gate_type self.create_input_parameter(0, size * size * 3, [size, size * 3]) self.create_bias_parameter(bias, size * 3) ''' A layer for calculating the cost of sequential conditional random field model. Example: CRFLayer(name="crf_cost", size=label_num, inputs=["output", "label", "weight"]) where "weight" is optional, one weight for each sequence @param coeff: weight of the layer ''' @config_layer('crf') class CRFLayer(LayerBase): def __init__(self, name, size, inputs, coeff=1.0, device=None): super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device) config_assert(2 <= len(self.inputs) <= 3, 'CRFLayer must have 2 or 3 inputs') self.create_input_parameter(0, size * (size + 2), [size, size + 2]) self.config.coeff = coeff ''' A layer for calculating the decoding sequence of sequential conditional random field model. The decoding sequence is stored in output_.ids If a second input is provided, it is treated as the ground-truth label, and this layer will also calculate error, output_.value[i] is 1 for incorrect decoding or 0 for correct decoding ''' @config_layer('crf_decoding') class CRFDecodingLayer(LayerBase): def __init__(self, name, size, inputs, device=None): super(CRFDecodingLayer, self).__init__( name, 'crf_decoding', size, inputs, device=device) config_assert( len(self.inputs) <= 2, 'CRFDecodingLayer cannot have more than 2 inputs') self.create_input_parameter(0, size * (size + 2), [size, size + 2]) @config_layer('ctc') class CTCLayer(LayerBase): def __init__(self, name, size, inputs, norm_by_times=False, device=None): super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device) self.config.norm_by_times = norm_by_times config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs') @config_layer('warp_ctc') class WarpCTCLayer(LayerBase): def __init__(self, name, size, inputs, blank=0, norm_by_times=False, device=None): super(WarpCTCLayer, self).__init__( name, 'warp_ctc', size=size, inputs=inputs, device=device) self.config.blank = blank self.config.norm_by_times = norm_by_times config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs') input_layer = self.get_input_layer(0) config_assert( (input_layer.active_type == '' or input_layer.active_type == 'linear'), "Expecting the active_type of input layer to be linear or null") @config_layer('recurrent_layer_group') class RecurrentLayerGroup(LayerBase): def __init__(self, name, device=None): super(RecurrentLayerGroup, self).__init__( name, 'recurrent_layer_group', 0, inputs=[], device=device) # Deprecated, use a new layer specific class instead @config_func def Layer(name, type, **xargs): layers = {} layers.update(g_cost_map) layers.update(g_layer_type_map) layer_func = layers.get(type) config_assert(layer_func, "layer type '%s' not supported." % type) return layer_func(name, **xargs) @config_func def ParameterHook(type, **kwargs): if type == 'pruning': mask_filename = kwargs.get('mask_filename', None) assert mask_filename is not None hook = ParameterUpdaterHookConfig() hook.type = type hook.purning_mask_filename = mask_filename return hook else: return None @config_func def Parameter(name, size, device, dims, learning_rate=None, momentum=None, decay_rate=None, decay_rate_l1=None, initial_mean=None, initial_std=None, initial_strategy=None, initial_smart=None, num_batches_regularization=None, sparse_remote_update=None, sparse_update=None, gradient_clipping_threshold=None, sparse=None, format=None, need_compact=None, is_static=None, is_shared=None, update_hooks=None): config_assert(name not in g_parameter_map, 'Duplicated parameter name: ' + name) para = g_config.model_config.parameters.add() para.name = name para.size = size if device is not None: para.device = int(device) para.dims.extend(dims) if learning_rate is not None: para.learning_rate = float(learning_rate) momentum = default(momentum, g_default_momentum) if momentum is not None: para.momentum = float(momentum) config_assert(not momentum or not decay_rate_l1, "momentum and decay_rate_l1 cannot both be non-zero") decay_rate = default(decay_rate, g_default_decay_rate) if decay_rate is not None: para.decay_rate = decay_rate if decay_rate_l1 is not None: para.decay_rate_l1 = decay_rate_l1 para.initial_std = default(initial_std, g_default_initial_std) para.initial_mean = default(initial_mean, g_default_initial_mean) num_batches_regularization = default(num_batches_regularization, g_default_num_batches_regularization) if num_batches_regularization is not None: para.num_batches_regularization = int(num_batches_regularization) if sparse_remote_update is not None: para.sparse_remote_update = sparse_remote_update if sparse_remote_update: g_config.opt_config.use_sparse_remote_updater = True if sparse_update is not None: para.sparse_update = sparse_update gradient_clipping_threshold = default(gradient_clipping_threshold, g_default_gradient_clipping_threshold) if gradient_clipping_threshold is not None: para.gradient_clipping_threshold = gradient_clipping_threshold para.initial_strategy = default(initial_strategy, g_default_initial_strategy) para.initial_smart = default(initial_smart, g_default_initial_smart) if para.initial_smart: para.initial_mean = 0. if len(para.dims) != 0: para.initial_std = 1. / math.sqrt(para.dims[0]) else: print( "Use initial_smart, but dims not set. Initial_smart may not be used in this layer" ) traceback.print_exc() para.initial_std = 1. / math.sqrt(para.size) if g_default_compact_func is not None: sparse, format, need_compact = g_default_compact_func(para.name) if sparse is not None: para.is_sparse = sparse if format is not None: para.format = format if need_compact is not None: para.need_compact = need_compact if is_static is not None: para.is_static = is_static config_assert(not para.sparse_remote_update or not para.is_static, "sparse_remote_update and is_static cannot both be true") if is_shared is not None: para.is_shared = is_shared update_hooks = default(update_hooks, g_default_update_hooks) if update_hooks is not None: if hasattr(update_hooks, '__call__'): update_hooks = update_hooks(para.name) if isinstance(update_hooks, list): for hook in update_hooks: para.update_hooks.extend([hook]) else: para.update_hooks.extend(update_hooks) g_parameter_map[name] = para @config_func def default_initial_std(val): global g_default_initial_std g_default_initial_std = val @config_func def default_initial_mean(val): global g_default_initial_mean g_default_initial_mean = val @config_func def default_initial_strategy(val): global g_default_initial_strategy g_default_initial_strategy = val @config_func def default_initial_smart(val): global g_default_initial_smart g_default_initial_smart = val @config_func def default_momentum(val): global g_default_momentum g_default_momentum = val @config_func def default_decay_rate(val): global g_default_decay_rate g_default_decay_rate = val @config_func def default_num_batches_regularization(val): global g_default_num_batches_regularization g_default_num_batches_regularization = val @config_func def default_gradient_clipping_threshold(val): global g_default_gradient_clipping_threshold g_default_gradient_clipping_threshold = val @config_func def default_device(val): global g_default_device g_default_device = val @config_func def default_update_hooks(val): global g_default_update_hooks g_default_update_hooks = val @config_func def default_compact_func(val): global g_default_compact_func g_default_compact_func = val def make_importer(config_dir, config_args): def Import(config_file, local_args={}): if not config_file.startswith('/'): config_file = config_dir + '/' + config_file g_config.config_files.append(config_file) execfile(config_file, make_config_environment(config_file, config_args), local_args) return Import settings = dict( batch_size=None, mini_batch_size=None, algorithm='async_sgd', async_lagged_grad_discard_ratio=1.5, learning_method='momentum', num_batches_per_send_parameter=None, num_batches_per_get_parameter=None, center_parameter_update_method=None, learning_rate=1., learning_rate_decay_a=0., learning_rate_decay_b=0., learning_rate_schedule='poly', learning_rate_args='', l1weight=0.1, l2weight=0., l2weight_zero_iter=0, c1=0.0001, backoff=0.5, owlqn_steps=10, max_backoff=5, average_window=0, do_average_in_cpu=False, max_average_window=None, ada_epsilon=1e-6, ada_rou=0.95, delta_add_rate=1.0, shrink_parameter_value=0, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-8, ) settings_deprecated = dict(usage_ratio=1., ) trainer_settings = dict( save_dir="./output/model", init_model_path=None, start_pass=0, ) @config_func def Settings(**args): for k, v in args.iteritems(): if k == "usage_ratio": logger.warning( "Deprecated: define usage_ratio in DataConfig instead") if g_config.HasField("data_config"): g_config.data_config.__setattr__(k, v) settings_deprecated[k] = v continue elif k in settings: settings[k] = v elif k in trainer_settings: trainer_settings[k] = v else: logger.fatal('Unkown setting: %s' % k) @config_func def cluster_config(**args): pass @config_func def EnableSubmodelSuffix(flag=True): """ If enabled, the layer and evaluator names in submodel will be automatically appended with @submodel_name """ global g_add_submodel_suffix g_add_submodel_suffix = flag def make_config_environment(config_file, config_args): def make_setter(k): def setter(v): logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v)) return setter funcs = {} funcs.update(g_config_funcs) for k in settings.iterkeys(): funcs[k] = make_setter(k) for k in settings_deprecated.iterkeys(): funcs[k] = make_setter(k) config_dir = os.path.dirname(config_file) if not config_dir: config_dir = '.' funcs.update( Import=make_importer(config_dir, config_args), get_config_arg=make_get_config_arg(config_args), ) funcs.update(g_extended_config_funcs) return funcs def make_get_config_arg(config_args): def get_config_arg(name, type, default=None): if type == bool: s = config_args.get(name) if not s: return default if s == 'True' or s == '1' or s == 'true': return True if s == 'False' or s == '0' or s == 'false': return False raise ValueError('Value of config_arg %s is not boolean' % name) else: return type(config_args.get(name, default)) return get_config_arg def importlib(name): __import__(name) return sys.modules[name] def find_caller(): stack = traceback.extract_stack() for s in stack[-4::-1]: if not s[0].endswith('config_parser.py'): return s[0], s[1], s[2] return "(unknown file)", 0, "(unknown function)" def my_fatal(s): logger.critical(s) raise Exception() def parse_config(config_file, config_arg_str): ''' @param config_arg_str: a string of the form var1=val1,var2=val2. It will be passed to config script as a dictionary CONFIG_ARGS ''' init_config_environment() config_args = {} logger.findCaller = find_caller logger.fatal = my_fatal g_config.model_config.type = "nn" if config_arg_str: config_args = dict([f.split('=') for f in config_arg_str.split(',')]) global g_command_config_args g_command_config_args.update(config_args) extension_module_name = config_args.get('extension_module_name') if extension_module_name: global g_extended_config_funcs extension_module = importlib(extension_module_name) g_extended_config_funcs = extension_module.get_config_funcs(g_config) g_config.model_config.type = 'nn' global g_current_submodel, g_root_submodel g_root_submodel = g_config.model_config.sub_models.add() g_root_submodel.name = 'root' g_root_submodel.is_recurrent_layer_group = False g_current_submodel = g_root_submodel execfile(config_file, make_config_environment(config_file, config_args)) for k, v in settings.iteritems(): if v is None: continue g_config.opt_config.__setattr__(k, v) for k, v in trainer_settings.iteritems(): if v is None: continue g_config.__setattr__(k, v) for name in g_config.model_config.input_layer_names: assert name in g_layer_map, \ 'input name "%s" does not correspond to a layer name' % name assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \ 'The type of input layer "%s" is not "data"' % name for name in g_config.model_config.output_layer_names: assert name in g_layer_map, \ 'input name "%s" does not correspond to a layer name' % name return g_config def parse_config_and_serialize(config_file, config_arg_str): try: config = parse_config(config_file, config_arg_str) #logger.info(config) return config.SerializeToString() except: traceback.print_exc() raise if __name__ == '__main__': try: config = parse_config(sys.argv[1], '') config.SerializeToString() __real_print__(str(config)) except: traceback.print_exc() raise