api_anakin_engine.cc 17.0 KB
Newer Older
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

T
Tao Luo 已提交
15 16 17
#include <map>
#include <string>
#include <utility>
L
Luo Tao 已提交
18
#include <vector>
Y
Yan Chunwei 已提交
19

20 21 22
#include "paddle/fluid/inference/api/api_anakin_engine.h"
#include "paddle/fluid/inference/api/paddle_api.h"

T
Tao Luo 已提交
23 24 25 26
#include "framework/core/net/net.h"
#include "framework/operators/ops.h"
#include "saber/funcs/timer.h"

Y
Yan Chunwei 已提交
27 28
namespace paddle {

Y
Yan Chunwei 已提交
29
using paddle::contrib::AnakinConfig;
30 31 32 33
template <typename T, Precision P, OpRunType R>
extern std::mutex PaddleInferenceAnakinPredictor<T, P, R>::mutex_;
template <typename T, Precision P, OpRunType R>
extern std::once_flag PaddleInferenceAnakinPredictor<T, P, R>::init_anakin_;
Y
Yan Chunwei 已提交
34

35 36 37 38 39
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitEnv() {
  std::call_once(this->init_anakin_, [this]() {
    anakin::Env<T>::env_init(this->config_.max_stream);
  });
石晓伟 已提交
40
  anakin::TargetWrapper<T>::set_device(this->config_.device_id);
Y
Yan Chunwei 已提交
41
}
42 43 44 45
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitNet() {
  std::unique_lock<std::mutex> lock(this->mutex_);
  this->executor_p_ = new anakin::Net<T, P, R>(*this->graph_p_, true);
T
Tao Luo 已提交
46
}
47 48 49 50 51 52 53 54 55 56
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::SetContext() {
  this->ctx_p_ = std::make_shared<anakin::Context<T>>(
      this->config_.device_id, this->config_.data_stream_id,
      this->config_.compute_stream_id);
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitGraph() {
  this->graph_p_ =
      std::make_shared<anakin::graph::Graph<T, anakin::Precision::FP32>>();
石晓伟 已提交
57 58 59 60 61 62 63
  if (!this->config_.model_file.empty()) {
    this->graph_p_->load(this->config_.model_file);
  } else if (this->config_.model_buf_p) {
    this->graph_p_->load(this->config_.model_buf_p,
                         this->config_.model_buf_len);
  } else {
    LOG(FATAL) << "Model load error.";
C
cuichaowen 已提交
64
  }
65 66 67
  this->input_names_ = this->graph_p_->get_ins();
  this->output_names_ = this->graph_p_->get_outs();
  for (auto &input_str : this->input_names_) {
68 69
    if (this->config_.init_inputs_shape.find(input_str) ==
        this->config_.init_inputs_shape.end()) {
石晓伟 已提交
70
      LOG(FATAL) << input_str << " should be set in init_inputs_shape.";
71 72 73 74
    }
    std::vector<int> shape =
        this->config_.init_inputs_shape.find(input_str)->second;
    this->graph_p_->Reshape(input_str, shape);
C
cuichaowen 已提交
75
  }
76 77 78 79 80
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::OptimizeGraph() {
  if (!this->graph_p_->Optimize()) {
    LOG(FATAL) << "Graph optimization error.";
C
cuichaowen 已提交
81
  }
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitPredictor() {
  this->InitEnv();
  this->SetContext();
  this->InitGraph();
  this->OptimizeGraph();
  this->InitNet();
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::Predict() {
  anakin::TargetWrapper<T>::device_sync();
  this->executor_p_->prediction();
  anakin::TargetWrapper<T>::device_sync();
}
template <typename T, Precision P, OpRunType R>
bool PaddleInferenceAnakinPredictor<T, P, R>::Run(
    const std::vector<PaddleTensor> &inputs,
    std::vector<PaddleTensor> *output_data, int batch_size) {
  if (this->config_.re_allocable) {
    return this->RunImpl(inputs, output_data);
  } else {
    // Run inputs data that exceeds batch size in batches.
    // 1. Reassign the batch size.
    if (batch_size == -1) {
      if (!inputs[0].lod.empty()) {
        batch_size = inputs[0].lod[0].size() - 1;
      } else {
        batch_size = inputs[0].shape[0];
      }
    }
    // 2. If the data don't need to be batched, run it directly.
    if (batch_size <= this->config_.init_batch_size) {
      return this->RunImpl(inputs, output_data);
    }
    // 3. Check the batch size and define temporary variables.
    std::vector<PaddleTensor> cur_inputs;
    std::vector<PaddleTensor> outputs_master;
    std::vector<std::vector<paddle::PaddleTensor>> outputs_vec;
    for (const auto &input : inputs) {
      if (!input.lod.empty()) {
        if (input.lod.size() != 1) {
          return false;
        }
        if (input.lod[0].size() - 1 != batch_size) {
          return false;
        }
      } else {
        LOG(INFO) << "Non-lod mode to be implemented.";
        return false;
      }
      PaddleTensor tensor;
      tensor.name = input.name;
      tensor.dtype = PaddleDType::FLOAT32;
      cur_inputs.push_back(tensor);
    }
    for (auto output : *output_data) {
      PaddleTensor tensor;
      tensor.name = output.name;
      outputs_master.push_back(tensor);
    }
    // 4. Batch execution.
    for (size_t start_batch = 0; start_batch < batch_size;) {
      auto end_batch = start_batch + this->config_.init_batch_size;
      if (end_batch > batch_size) {
        end_batch = batch_size;
      }
      auto cur_outputs = outputs_master;
      for (size_t i = 0; i < inputs.size(); i++) {
        auto start = inputs[i].lod[0][start_batch];
        auto end = inputs[i].lod[0][end_batch];
        std::vector<size_t> offsets;
        for (size_t j = start_batch; j <= end_batch; j++) {
          offsets.push_back(inputs[i].lod[0][j] -
                            inputs[i].lod[0][start_batch]);
        }
        auto mem_start = static_cast<float *>(inputs[i].data.data()) + start;
        cur_inputs[i].data =
            PaddleBuf(mem_start, (end - start) * sizeof(float));
        cur_inputs[i].lod = std::vector<std::vector<size_t>>({offsets});
        cur_inputs[i].shape =
            std::vector<int>({static_cast<int>(end - start), 1, 1, 1});
      }
      if (!this->RunImpl(cur_inputs, &cur_outputs)) {
        return false;
      }
      outputs_vec.push_back(cur_outputs);
      start_batch = end_batch;
    }
    // 5. Copy the results to contiguous memory.
    // Assume that each batch has the same final outputs size.
    auto count = [](const std::vector<int> &v) {
      int cnt = 1;
      for_each(v.begin(), v.end(), [&cnt](int n) { cnt *= n; });
      return cnt;
    };
    for (size_t i = 0; i < output_data->size(); i++) {
      std::vector<int> shape = outputs_vec[i][0].shape;
      shape[0] = batch_size;
      int total_cnt = count(shape);
      (*output_data)[i].shape = shape;
      (*output_data)[i].data.Resize(total_cnt * sizeof(float));
      float *addr = static_cast<float *>((*output_data)[i].data.data());
      for (const auto &single_out : outputs_vec) {
        int cnt = count(single_out[i].shape);
        memcpy(addr, single_out[i].data.data(), cnt * sizeof(float));
        addr += cnt;
      }
    }
C
cuichaowen 已提交
191
  }
Y
Yan Chunwei 已提交
192 193
  return true;
}
194 195
template <typename T, Precision P, OpRunType R>
bool PaddleInferenceAnakinPredictor<T, P, R>::RunImpl(
Y
Yan Chunwei 已提交
196
    const std::vector<PaddleTensor> &inputs,
197
    std::vector<PaddleTensor> *output_data) {
石晓伟 已提交
198
  anakin::TargetWrapper<T>::set_device(this->config_.device_id);
Y
Yan Chunwei 已提交
199 200
  for (const auto &input : inputs) {
    if (input.dtype != PaddleDType::FLOAT32) {
201 202
      LOG(FATAL) << "Only support float type inputs. " << input.name
                 << "'s type is not float";
Y
Yan Chunwei 已提交
203
    }
204
    auto d_tensor_p = this->executor_p_->get_in(input.name);
205
    auto net_shape = d_tensor_p->valid_shape();
C
cuichaowen 已提交
206
    if (net_shape.size() != input.shape.size()) {
207 208
      LOG(FATAL) << " input  " << input.name
                 << "'s shape size should be equal to that of net";
C
cuichaowen 已提交
209 210 211 212
    }
    int sum = 1;
    for_each(input.shape.begin(), input.shape.end(), [&](int n) { sum *= n; });
    if (sum > net_shape.count()) {
213 214 215 216 217 218 219 220 221 222
      if (this->config_.re_allocable) {
        this->graph_p_->Reshape(input.name, input.shape);
        delete this->executor_p_;
        this->InitNet();
        d_tensor_p = this->executor_p_->get_in(input.name);
      } else {
        LOG(FATAL)
            << "Run failed because Anakin was expected not to reallocate "
               "memory.";
      }
C
cuichaowen 已提交
223
    }
224
    std::vector<int> tmp_shape;
C
cuichaowen 已提交
225 226 227
    for (auto s : input.shape) {
      tmp_shape.push_back(s);
    }
228 229 230 231 232
    auto *data = static_cast<float *>(input.data.data());
    anakin::saber::Tensor<typename anakin::DefaultHostType<T>::Host_type>
        h_tensor(data, typename anakin::DefaultHostType<T>::Host_type(), 0,
                 tmp_shape);
    d_tensor_p->reshape(tmp_shape);
C
cuichaowen 已提交
233

T
Tao Luo 已提交
234 235
    if (input.lod.size() > 0) {
      if (input.lod.size() > 1) {
236 237
        LOG(FATAL) << " input lod first dim should <=1, but you set "
                   << input.lod.size();
T
Tao Luo 已提交
238
      }
239 240 241 242 243 244
      std::vector<int> lod(input.lod[0].begin(), input.lod[0].end());
      std::vector<std::vector<int>> offset({lod});
      d_tensor_p->set_seq_offset(offset);
      VLOG(3) << "offset.size(): " << offset[0].size();
      for (int i = 0; i < offset[0].size(); i++) {
        VLOG(3) << offset[0][i];
T
Tao Luo 已提交
245 246
      }
    }
247
    d_tensor_p->copy_from(h_tensor);
Y
Yan Chunwei 已提交
248
  }
249
  this->Predict();
Y
Yan Chunwei 已提交
250
  if (output_data->empty()) {
251
    LOG(FATAL) << "At least one output should be set with tensors' names.";
Y
Yan Chunwei 已提交
252 253
  }
  for (auto &output : *output_data) {
254 255 256 257
    if (std::find(this->output_names_.begin(), this->output_names_.end(),
                  output.name) == this->output_names_.end()) {
      LOG(FATAL) << output.name << " is not in the outputs of the graph.";
    }
258 259 260 261
    auto *d_tensor_p = this->executor_p_->get_out(output.name);
    output.shape = d_tensor_p->valid_shape();
    if (output.data.length() < d_tensor_p->valid_size() * sizeof(float)) {
      output.data.Resize(d_tensor_p->valid_size() * sizeof(float));
Y
Yan Chunwei 已提交
262
    }
263 264 265 266 267
    auto *data = static_cast<float *>(output.data.data());
    anakin::saber::Tensor<typename anakin::DefaultHostType<T>::Host_type>
        h_tensor(data, typename anakin::DefaultHostType<T>::Host_type(), 0,
                 d_tensor_p->valid_shape());
    h_tensor.copy_from(*d_tensor_p);
Y
Yan Chunwei 已提交
268 269 270
  }
  return true;
}
271
template <typename T, Precision P, OpRunType R>
272 273 274 275 276 277
bool PaddleInferenceAnakinPredictor<T, P, R>::Reset(
    PaddleInferenceAnakinPredictor<T, P, R> *predictor) {
  this->config_ = predictor->GetConfig();
  this->graph_p_ = predictor->GetGraph();
  this->input_names_ = predictor->GetInputNames();
  this->output_names_ = predictor->GetOutputNames();
278 279 280 281
  this->ctx_p_ = std::make_shared<anakin::Context<T>>(
      this->config_.device_id, this->config_.data_stream_id,
      this->config_.compute_stream_id);
  this->InitNet();
282 283 284 285 286 287 288
  return true;
}
template <typename T, Precision P, OpRunType R>
std::unique_ptr<PaddlePredictor>
PaddleInferenceAnakinPredictor<T, P, R>::New() {
  return std::unique_ptr<PaddlePredictor>(
      new PaddleInferenceAnakinPredictor<T, P, R>());
C
cuichaowen 已提交
289 290 291
}
// the cloned new Predictor of anakin share the same net weights from original
// Predictor
292
template <typename T, Precision P, OpRunType R>
C
cuichaowen 已提交
293
std::unique_ptr<PaddlePredictor>
294
PaddleInferenceAnakinPredictor<T, P, R>::Clone() {
C
cuichaowen 已提交
295
  VLOG(3) << "Anakin Predictor::clone";
296
  std::unique_ptr<PaddlePredictor> cls = std::move(this->New());
C
cuichaowen 已提交
297
  auto anakin_predictor_p =
298
      dynamic_cast<PaddleInferenceAnakinPredictor<T, P, R> *>(cls.get());
C
cuichaowen 已提交
299
  if (!anakin_predictor_p) {
300
    LOG(FATAL) << "fail to call Init";
C
cuichaowen 已提交
301
  }
302
  anakin_predictor_p->Reset(this);
303 304
  return cls;
}
C
cuichaowen 已提交
305

306 307
#ifdef ANAKIN_MLU_PLACE
template <Precision P, OpRunType R>
308 309 310 311 312 313
std::unique_ptr<PaddlePredictor>
PaddleInferenceAnakinMLUPredictor<P, R>::New() {
  return std::unique_ptr<PaddlePredictor>(
      new PaddleInferenceAnakinMLUPredictor<P, R>());
}
template <Precision P, OpRunType R>
314 315 316 317 318 319
void PaddleInferenceAnakinMLUPredictor<P, R>::SetContext() {
  this->ctx_p_ = std::make_shared<anakin::Context<anakin::MLU>>(
      this->config_.device_id, this->config_.data_stream_id,
      this->config_.compute_stream_id);
  this->ctx_p_->set_model_parallel(this->config_.model_parallel);
  this->ctx_p_->set_fusion(this->config_.op_fuse);
Y
Yan Chunwei 已提交
320
}
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
template <Precision P, OpRunType R>
void PaddleInferenceAnakinMLUPredictor<P, R>::OptimizeGraph() {
  if (!this->graph_p_->fusion_optimize(this->config_.op_fuse)) {
    LOG(FATAL) << "Graph optimization error.";
  }
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinMLUPredictor<P, R>::InitNet() {
  std::unique_lock<std::mutex> lock(this->mutex_);
  this->executor_p_ = new anakin::Net<anakin::MLU, P, R>();
  this->executor_p_->fusion_init(*this->graph_p_, this->ctx_p_, true);
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinMLUPredictor<P, R>::Predict() {
  anakin::TargetWrapper<anakin::MLU>::device_sync();
  this->executor_p_->fusion_prediction();
  anakin::TargetWrapper<anakin::MLU>::device_sync();
}
#endif
Y
Yan Chunwei 已提交
340

石晓伟 已提交
341 342
#ifdef ANAKIN_BM_PLACE
template <Precision P, OpRunType R>
343 344 345 346 347
std::unique_ptr<PaddlePredictor> PaddleInferenceAnakinBMPredictor<P, R>::New() {
  return std::unique_ptr<PaddlePredictor>(
      new PaddleInferenceAnakinBMPredictor<P, R>());
}
template <Precision P, OpRunType R>
石晓伟 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
void PaddleInferenceAnakinBMPredictor<P, R>::OptimizeGraph() {
  if (!this->graph_p_->fusion_optimize()) {
    LOG(FATAL) << "Graph optimization error.";
  }
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinBMPredictor<P, R>::InitNet() {
  std::unique_lock<std::mutex> lock(this->mutex_);
  this->executor_p_ = new anakin::Net<anakin::BM, P, R>();
  this->executor_p_->fusion_init(*this->graph_p_, this->ctx_p_, true);
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinBMPredictor<P, R>::Predict() {
  anakin::TargetWrapper<anakin::BM>::device_sync();
  this->executor_p_->fusion_prediction();
  anakin::TargetWrapper<anakin::BM>::device_sync();
}
#endif

367
#ifdef PADDLE_WITH_CUDA
368 369 370 371 372 373 374 375 376 377
template class PaddleInferenceAnakinPredictor<
    anakin::NV, anakin::Precision::FP32, ::anakin::OpRunType::ASYNC>;
#endif
#ifdef ANAKIN_X86_PLACE
template class PaddleInferenceAnakinPredictor<
    anakin::X86, anakin::Precision::FP32, ::anakin::OpRunType::ASYNC>;
#endif
#ifdef ANAKIN_MLU_PLACE
template class PaddleInferenceAnakinMLUPredictor<anakin::Precision::FP32,
                                                 ::anakin::OpRunType::SYNC>;
378
#endif
石晓伟 已提交
379 380 381 382
#ifdef ANAKIN_BM_PLACE
template class PaddleInferenceAnakinBMPredictor<anakin::Precision::FP32,
                                                ::anakin::OpRunType::ASYNC>;
#endif
C
cuichaowen 已提交
383

Y
Yan Chunwei 已提交
384 385
// A factory to help create difference predictor.
template <>
Y
Yan Chunwei 已提交
386 387 388
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<contrib::AnakinConfig, PaddleEngineKind::kAnakin>(
    const contrib::AnakinConfig &config) {
389
#ifdef PADDLE_WITH_CUDA
390 391 392 393 394
  if (config.target_type == contrib::AnakinConfig::NVGPU) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinPredictor<anakin::NV, anakin::Precision::FP32,
                                           ::anakin::OpRunType::ASYNC>(config));
  }
395
#endif
396 397 398 399 400
#ifdef ANAKIN_X86_PLACE
  if (config.target_type == contrib::AnakinConfig::X86) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinPredictor<anakin::X86, anakin::Precision::FP32,
                                           ::anakin::OpRunType::ASYNC>(config));
C
cuichaowen 已提交
401
  }
402 403 404 405 406 407 408 409 410
#endif
#ifdef ANAKIN_MLU_PLACE
  if (config.target_type == contrib::AnakinConfig::MLU) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinMLUPredictor<anakin::Precision::FP32,
                                              ::anakin::OpRunType::SYNC>(
            config));
  }
#endif
石晓伟 已提交
411 412 413 414 415 416 417 418 419 420
#ifdef ANAKIN_BM_PLACE
  if (config.target_type == contrib::AnakinConfig::BM) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinBMPredictor<anakin::Precision::FP32,
                                             ::anakin::OpRunType::ASYNC>(
            config));
  }
#endif
  LOG(FATAL) << "Anakin Predictor create on unknown platform: "
             << config.target_type;
421
  return nullptr;
T
Tao Luo 已提交
422
}
423 424
template <typename T, Precision P, OpRunType R>
void DisplayOpTimer(anakin::Net<T, P, R> *net_executor, int epoch) {
T
Tao Luo 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
#ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER
  std::vector<float> op_time = net_executor->get_op_time();
  auto exec_funcs = net_executor->get_exec_funcs();
  auto op_param = net_executor->get_op_param();
  for (int i = 0; i < op_time.size(); i++) {
    LOG(INFO) << "name: " << exec_funcs[i].name
              << " op_type: " << exec_funcs[i].op_name
              << " op_param: " << op_param[i] << " time " << op_time[i] / epoch;
  }
  std::map<std::string, float> op_map;
  for (int i = 0; i < op_time.size(); i++) {
    auto it = op_map.find(op_param[i]);
    if (it != op_map.end())
      op_map[op_param[i]] += op_time[i];
    else
      op_map.insert(std::pair<std::string, float>(op_param[i], op_time[i]));
  }
  for (auto it = op_map.begin(); it != op_map.end(); ++it) {
    LOG(INFO) << it->first << "  " << (it->second) / epoch << " ms";
  }
#endif
446 447 448 449 450 451
}
template <typename T, Precision P, OpRunType R>
PaddleInferenceAnakinPredictor<T, P, R>::~PaddleInferenceAnakinPredictor() {
  DisplayOpTimer<T, P, R>(this->executor_p_, this->config_.init_batch_size);
  delete this->executor_p_;
  this->executor_p_ = nullptr;
T
Tao Luo 已提交
452
}
Y
Yan Chunwei 已提交
453 454

}  // namespace paddle