api_anakin_engine.cc 16.3 KB
Newer Older
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

T
Tao Luo 已提交
15 16 17
#include <map>
#include <string>
#include <utility>
L
Luo Tao 已提交
18
#include <vector>
Y
Yan Chunwei 已提交
19

20 21 22
#include "paddle/fluid/inference/api/api_anakin_engine.h"
#include "paddle/fluid/inference/api/paddle_api.h"

T
Tao Luo 已提交
23 24 25 26
#include "framework/core/net/net.h"
#include "framework/operators/ops.h"
#include "saber/funcs/timer.h"

Y
Yan Chunwei 已提交
27 28
namespace paddle {

Y
Yan Chunwei 已提交
29
using paddle::contrib::AnakinConfig;
30 31 32 33
template <typename T, Precision P, OpRunType R>
extern std::mutex PaddleInferenceAnakinPredictor<T, P, R>::mutex_;
template <typename T, Precision P, OpRunType R>
extern std::once_flag PaddleInferenceAnakinPredictor<T, P, R>::init_anakin_;
Y
Yan Chunwei 已提交
34

35 36 37 38 39
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitEnv() {
  std::call_once(this->init_anakin_, [this]() {
    anakin::Env<T>::env_init(this->config_.max_stream);
  });
石晓伟 已提交
40
  anakin::TargetWrapper<T>::set_device(this->config_.device_id);
Y
Yan Chunwei 已提交
41
}
42 43 44 45
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitNet() {
  std::unique_lock<std::mutex> lock(this->mutex_);
  this->executor_p_ = new anakin::Net<T, P, R>(*this->graph_p_, true);
T
Tao Luo 已提交
46
}
47 48 49 50 51 52 53 54 55 56
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::SetContext() {
  this->ctx_p_ = std::make_shared<anakin::Context<T>>(
      this->config_.device_id, this->config_.data_stream_id,
      this->config_.compute_stream_id);
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitGraph() {
  this->graph_p_ =
      std::make_shared<anakin::graph::Graph<T, anakin::Precision::FP32>>();
石晓伟 已提交
57 58 59 60 61 62 63
  if (!this->config_.model_file.empty()) {
    this->graph_p_->load(this->config_.model_file);
  } else if (this->config_.model_buf_p) {
    this->graph_p_->load(this->config_.model_buf_p,
                         this->config_.model_buf_len);
  } else {
    LOG(FATAL) << "Model load error.";
C
cuichaowen 已提交
64
  }
65
  auto inputs = this->graph_p_->get_ins();
C
cuichaowen 已提交
66
  for (auto &input_str : inputs) {
67 68
    if (this->config_.init_inputs_shape.find(input_str) ==
        this->config_.init_inputs_shape.end()) {
石晓伟 已提交
69
      LOG(FATAL) << input_str << " should be set in init_inputs_shape.";
70 71 72 73
    }
    std::vector<int> shape =
        this->config_.init_inputs_shape.find(input_str)->second;
    this->graph_p_->Reshape(input_str, shape);
C
cuichaowen 已提交
74
  }
75 76 77 78 79
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::OptimizeGraph() {
  if (!this->graph_p_->Optimize()) {
    LOG(FATAL) << "Graph optimization error.";
C
cuichaowen 已提交
80
  }
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitPredictor() {
  this->InitEnv();
  this->SetContext();
  this->InitGraph();
  this->OptimizeGraph();
  this->InitNet();
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::Predict() {
  anakin::TargetWrapper<T>::device_sync();
  this->executor_p_->prediction();
  anakin::TargetWrapper<T>::device_sync();
}
template <typename T, Precision P, OpRunType R>
bool PaddleInferenceAnakinPredictor<T, P, R>::Run(
    const std::vector<PaddleTensor> &inputs,
    std::vector<PaddleTensor> *output_data, int batch_size) {
  if (this->config_.re_allocable) {
    return this->RunImpl(inputs, output_data);
  } else {
    // Run inputs data that exceeds batch size in batches.
    // 1. Reassign the batch size.
    if (batch_size == -1) {
      if (!inputs[0].lod.empty()) {
        batch_size = inputs[0].lod[0].size() - 1;
      } else {
        batch_size = inputs[0].shape[0];
      }
    }
    // 2. If the data don't need to be batched, run it directly.
    if (batch_size <= this->config_.init_batch_size) {
      return this->RunImpl(inputs, output_data);
    }
    // 3. Check the batch size and define temporary variables.
    std::vector<PaddleTensor> cur_inputs;
    std::vector<PaddleTensor> outputs_master;
    std::vector<std::vector<paddle::PaddleTensor>> outputs_vec;
    for (const auto &input : inputs) {
      if (!input.lod.empty()) {
        if (input.lod.size() != 1) {
          return false;
        }
        if (input.lod[0].size() - 1 != batch_size) {
          return false;
        }
      } else {
        LOG(INFO) << "Non-lod mode to be implemented.";
        return false;
      }
      PaddleTensor tensor;
      tensor.name = input.name;
      tensor.dtype = PaddleDType::FLOAT32;
      cur_inputs.push_back(tensor);
    }
    for (auto output : *output_data) {
      PaddleTensor tensor;
      tensor.name = output.name;
      outputs_master.push_back(tensor);
    }
    // 4. Batch execution.
    for (size_t start_batch = 0; start_batch < batch_size;) {
      auto end_batch = start_batch + this->config_.init_batch_size;
      if (end_batch > batch_size) {
        end_batch = batch_size;
      }
      auto cur_outputs = outputs_master;
      for (size_t i = 0; i < inputs.size(); i++) {
        auto start = inputs[i].lod[0][start_batch];
        auto end = inputs[i].lod[0][end_batch];
        std::vector<size_t> offsets;
        for (size_t j = start_batch; j <= end_batch; j++) {
          offsets.push_back(inputs[i].lod[0][j] -
                            inputs[i].lod[0][start_batch]);
        }
        auto mem_start = static_cast<float *>(inputs[i].data.data()) + start;
        cur_inputs[i].data =
            PaddleBuf(mem_start, (end - start) * sizeof(float));
        cur_inputs[i].lod = std::vector<std::vector<size_t>>({offsets});
        cur_inputs[i].shape =
            std::vector<int>({static_cast<int>(end - start), 1, 1, 1});
      }
      if (!this->RunImpl(cur_inputs, &cur_outputs)) {
        return false;
      }
      outputs_vec.push_back(cur_outputs);
      start_batch = end_batch;
    }
    // 5. Copy the results to contiguous memory.
    // Assume that each batch has the same final outputs size.
    auto count = [](const std::vector<int> &v) {
      int cnt = 1;
      for_each(v.begin(), v.end(), [&cnt](int n) { cnt *= n; });
      return cnt;
    };
    for (size_t i = 0; i < output_data->size(); i++) {
      std::vector<int> shape = outputs_vec[i][0].shape;
      shape[0] = batch_size;
      int total_cnt = count(shape);
      (*output_data)[i].shape = shape;
      (*output_data)[i].data.Resize(total_cnt * sizeof(float));
      float *addr = static_cast<float *>((*output_data)[i].data.data());
      for (const auto &single_out : outputs_vec) {
        int cnt = count(single_out[i].shape);
        memcpy(addr, single_out[i].data.data(), cnt * sizeof(float));
        addr += cnt;
      }
    }
C
cuichaowen 已提交
190
  }
Y
Yan Chunwei 已提交
191 192
  return true;
}
193 194
template <typename T, Precision P, OpRunType R>
bool PaddleInferenceAnakinPredictor<T, P, R>::RunImpl(
Y
Yan Chunwei 已提交
195
    const std::vector<PaddleTensor> &inputs,
196
    std::vector<PaddleTensor> *output_data) {
石晓伟 已提交
197
  anakin::TargetWrapper<T>::set_device(this->config_.device_id);
Y
Yan Chunwei 已提交
198 199
  for (const auto &input : inputs) {
    if (input.dtype != PaddleDType::FLOAT32) {
200 201
      LOG(FATAL) << "Only support float type inputs. " << input.name
                 << "'s type is not float";
Y
Yan Chunwei 已提交
202
    }
203 204
    auto d_tensor_p = this->executor_p_->get_in(input.name);
    auto net_shape = d_tensor_p->shape();
C
cuichaowen 已提交
205
    if (net_shape.size() != input.shape.size()) {
206 207
      LOG(FATAL) << " input  " << input.name
                 << "'s shape size should be equal to that of net";
C
cuichaowen 已提交
208 209 210 211
    }
    int sum = 1;
    for_each(input.shape.begin(), input.shape.end(), [&](int n) { sum *= n; });
    if (sum > net_shape.count()) {
212 213 214 215 216 217 218 219 220 221
      if (this->config_.re_allocable) {
        this->graph_p_->Reshape(input.name, input.shape);
        delete this->executor_p_;
        this->InitNet();
        d_tensor_p = this->executor_p_->get_in(input.name);
      } else {
        LOG(FATAL)
            << "Run failed because Anakin was expected not to reallocate "
               "memory.";
      }
C
cuichaowen 已提交
222
    }
223
    std::vector<int> tmp_shape;
C
cuichaowen 已提交
224 225 226
    for (auto s : input.shape) {
      tmp_shape.push_back(s);
    }
227 228 229 230 231
    auto *data = static_cast<float *>(input.data.data());
    anakin::saber::Tensor<typename anakin::DefaultHostType<T>::Host_type>
        h_tensor(data, typename anakin::DefaultHostType<T>::Host_type(), 0,
                 tmp_shape);
    d_tensor_p->reshape(tmp_shape);
C
cuichaowen 已提交
232

T
Tao Luo 已提交
233 234
    if (input.lod.size() > 0) {
      if (input.lod.size() > 1) {
235 236
        LOG(FATAL) << " input lod first dim should <=1, but you set "
                   << input.lod.size();
T
Tao Luo 已提交
237
      }
238 239 240 241 242 243
      std::vector<int> lod(input.lod[0].begin(), input.lod[0].end());
      std::vector<std::vector<int>> offset({lod});
      d_tensor_p->set_seq_offset(offset);
      VLOG(3) << "offset.size(): " << offset[0].size();
      for (int i = 0; i < offset[0].size(); i++) {
        VLOG(3) << offset[0][i];
T
Tao Luo 已提交
244 245
      }
    }
246
    d_tensor_p->copy_from(h_tensor);
Y
Yan Chunwei 已提交
247
  }
248
  this->Predict();
Y
Yan Chunwei 已提交
249
  if (output_data->empty()) {
250
    LOG(FATAL) << "At least one output should be set with tensors' names.";
Y
Yan Chunwei 已提交
251 252
  }
  for (auto &output : *output_data) {
253 254 255 256
    auto *d_tensor_p = this->executor_p_->get_out(output.name);
    output.shape = d_tensor_p->valid_shape();
    if (output.data.length() < d_tensor_p->valid_size() * sizeof(float)) {
      output.data.Resize(d_tensor_p->valid_size() * sizeof(float));
Y
Yan Chunwei 已提交
257
    }
258 259 260 261 262
    auto *data = static_cast<float *>(output.data.data());
    anakin::saber::Tensor<typename anakin::DefaultHostType<T>::Host_type>
        h_tensor(data, typename anakin::DefaultHostType<T>::Host_type(), 0,
                 d_tensor_p->valid_shape());
    h_tensor.copy_from(*d_tensor_p);
Y
Yan Chunwei 已提交
263 264 265
  }
  return true;
}
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
template <typename T, Precision P, OpRunType R>
bool PaddleInferenceAnakinPredictor<T, P, R>::ResetConfig(
    const AnakinConfig &config) {
  this->config_ = config;
  return true;
}
template <typename T, Precision P, OpRunType R>
anakin::Net<T, P, R> &PaddleInferenceAnakinPredictor<T, P, R>::ResetExecuter(
    std::shared_ptr<anakin::graph::Graph<T, P>> graph_p) {
  this->graph_p_ = graph_p;
  this->ctx_p_ = std::make_shared<anakin::Context<T>>(
      this->config_.device_id, this->config_.data_stream_id,
      this->config_.compute_stream_id);
  this->InitNet();
  return *this->executor_p_;
C
cuichaowen 已提交
281 282 283
}
// the cloned new Predictor of anakin share the same net weights from original
// Predictor
284
template <typename T, Precision P, OpRunType R>
C
cuichaowen 已提交
285
std::unique_ptr<PaddlePredictor>
286
PaddleInferenceAnakinPredictor<T, P, R>::Clone() {
C
cuichaowen 已提交
287
  VLOG(3) << "Anakin Predictor::clone";
C
cuichaowen 已提交
288
  std::unique_ptr<PaddlePredictor> cls(
289
      new PaddleInferenceAnakinPredictor<T, P, R>());
C
cuichaowen 已提交
290 291
  // construct executer from other graph
  auto anakin_predictor_p =
292
      dynamic_cast<PaddleInferenceAnakinPredictor<T, P, R> *>(cls.get());
C
cuichaowen 已提交
293
  if (!anakin_predictor_p) {
294
    LOG(FATAL) << "fail to call Init";
C
cuichaowen 已提交
295
  }
296 297 298 299
  anakin_predictor_p->ResetConfig(this->config_);
  anakin_predictor_p->ResetExecuter(this->graph_p_);
  return cls;
}
C
cuichaowen 已提交
300

301 302 303 304 305 306 307 308
#ifdef ANAKIN_MLU_PLACE
template <Precision P, OpRunType R>
void PaddleInferenceAnakinMLUPredictor<P, R>::SetContext() {
  this->ctx_p_ = std::make_shared<anakin::Context<anakin::MLU>>(
      this->config_.device_id, this->config_.data_stream_id,
      this->config_.compute_stream_id);
  this->ctx_p_->set_model_parallel(this->config_.model_parallel);
  this->ctx_p_->set_fusion(this->config_.op_fuse);
Y
Yan Chunwei 已提交
309
}
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
template <Precision P, OpRunType R>
void PaddleInferenceAnakinMLUPredictor<P, R>::OptimizeGraph() {
  if (!this->graph_p_->fusion_optimize(this->config_.op_fuse)) {
    LOG(FATAL) << "Graph optimization error.";
  }
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinMLUPredictor<P, R>::InitNet() {
  std::unique_lock<std::mutex> lock(this->mutex_);
  this->executor_p_ = new anakin::Net<anakin::MLU, P, R>();
  this->executor_p_->fusion_init(*this->graph_p_, this->ctx_p_, true);
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinMLUPredictor<P, R>::Predict() {
  anakin::TargetWrapper<anakin::MLU>::device_sync();
  this->executor_p_->fusion_prediction();
  anakin::TargetWrapper<anakin::MLU>::device_sync();
}
#endif
Y
Yan Chunwei 已提交
329

石晓伟 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
#ifdef ANAKIN_BM_PLACE
template <Precision P, OpRunType R>
void PaddleInferenceAnakinBMPredictor<P, R>::OptimizeGraph() {
  if (!this->graph_p_->fusion_optimize()) {
    LOG(FATAL) << "Graph optimization error.";
  }
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinBMPredictor<P, R>::InitNet() {
  std::unique_lock<std::mutex> lock(this->mutex_);
  this->executor_p_ = new anakin::Net<anakin::BM, P, R>();
  this->executor_p_->fusion_init(*this->graph_p_, this->ctx_p_, true);
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinBMPredictor<P, R>::Predict() {
  anakin::TargetWrapper<anakin::BM>::device_sync();
  this->executor_p_->fusion_prediction();
  anakin::TargetWrapper<anakin::BM>::device_sync();
}
#endif

351
#ifdef PADDLE_WITH_CUDA
352 353 354 355 356 357 358 359 360 361
template class PaddleInferenceAnakinPredictor<
    anakin::NV, anakin::Precision::FP32, ::anakin::OpRunType::ASYNC>;
#endif
#ifdef ANAKIN_X86_PLACE
template class PaddleInferenceAnakinPredictor<
    anakin::X86, anakin::Precision::FP32, ::anakin::OpRunType::ASYNC>;
#endif
#ifdef ANAKIN_MLU_PLACE
template class PaddleInferenceAnakinMLUPredictor<anakin::Precision::FP32,
                                                 ::anakin::OpRunType::SYNC>;
362
#endif
石晓伟 已提交
363 364 365 366
#ifdef ANAKIN_BM_PLACE
template class PaddleInferenceAnakinBMPredictor<anakin::Precision::FP32,
                                                ::anakin::OpRunType::ASYNC>;
#endif
C
cuichaowen 已提交
367

Y
Yan Chunwei 已提交
368 369
// A factory to help create difference predictor.
template <>
Y
Yan Chunwei 已提交
370 371 372
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<contrib::AnakinConfig, PaddleEngineKind::kAnakin>(
    const contrib::AnakinConfig &config) {
373
#ifdef PADDLE_WITH_CUDA
374 375 376 377 378
  if (config.target_type == contrib::AnakinConfig::NVGPU) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinPredictor<anakin::NV, anakin::Precision::FP32,
                                           ::anakin::OpRunType::ASYNC>(config));
  }
379
#endif
380 381 382 383 384
#ifdef ANAKIN_X86_PLACE
  if (config.target_type == contrib::AnakinConfig::X86) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinPredictor<anakin::X86, anakin::Precision::FP32,
                                           ::anakin::OpRunType::ASYNC>(config));
C
cuichaowen 已提交
385
  }
386 387 388 389 390 391 392 393 394
#endif
#ifdef ANAKIN_MLU_PLACE
  if (config.target_type == contrib::AnakinConfig::MLU) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinMLUPredictor<anakin::Precision::FP32,
                                              ::anakin::OpRunType::SYNC>(
            config));
  }
#endif
石晓伟 已提交
395 396 397 398 399 400 401 402 403 404
#ifdef ANAKIN_BM_PLACE
  if (config.target_type == contrib::AnakinConfig::BM) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinBMPredictor<anakin::Precision::FP32,
                                             ::anakin::OpRunType::ASYNC>(
            config));
  }
#endif
  LOG(FATAL) << "Anakin Predictor create on unknown platform: "
             << config.target_type;
405
  return nullptr;
T
Tao Luo 已提交
406
}
407 408
template <typename T, Precision P, OpRunType R>
void DisplayOpTimer(anakin::Net<T, P, R> *net_executor, int epoch) {
T
Tao Luo 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
#ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER
  std::vector<float> op_time = net_executor->get_op_time();
  auto exec_funcs = net_executor->get_exec_funcs();
  auto op_param = net_executor->get_op_param();
  for (int i = 0; i < op_time.size(); i++) {
    LOG(INFO) << "name: " << exec_funcs[i].name
              << " op_type: " << exec_funcs[i].op_name
              << " op_param: " << op_param[i] << " time " << op_time[i] / epoch;
  }
  std::map<std::string, float> op_map;
  for (int i = 0; i < op_time.size(); i++) {
    auto it = op_map.find(op_param[i]);
    if (it != op_map.end())
      op_map[op_param[i]] += op_time[i];
    else
      op_map.insert(std::pair<std::string, float>(op_param[i], op_time[i]));
  }
  for (auto it = op_map.begin(); it != op_map.end(); ++it) {
    LOG(INFO) << it->first << "  " << (it->second) / epoch << " ms";
  }
#endif
430 431 432 433 434 435
}
template <typename T, Precision P, OpRunType R>
PaddleInferenceAnakinPredictor<T, P, R>::~PaddleInferenceAnakinPredictor() {
  DisplayOpTimer<T, P, R>(this->executor_p_, this->config_.init_batch_size);
  delete this->executor_p_;
  this->executor_p_ = nullptr;
T
Tao Luo 已提交
436
}
Y
Yan Chunwei 已提交
437 438

}  // namespace paddle