test_xpu_delete_repeated_ops_pass.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import hypothesis.strategies as st
from auto_scan_test import PassAutoScanTest
from program_config import OpConfig, ProgramConfig, TensorConfig


class TestDeleteRepeatedShapePass(PassAutoScanTest):
    def sample_predictor_configs(self, program_config):
        config = self.create_inference_config(use_xpu=True)
        yield config, ['shape', 'cast', 'cast', 'cast'], (1e-5, 1e-5)

    def sample_program_config(self, draw):
        x_shape = draw(
            st.lists(
                st.integers(min_value=1, max_value=20), min_size=2, max_size=4
            )
        )

        shape_op0 = OpConfig(
            "shape",
            inputs={
                "Input": ["shape_x"],
            },
            outputs={"Out": ["shape0_out"]},
        )
        cast_op0 = OpConfig(
            "cast",
            inputs={
                "X": ["shape0_out"],
            },
            in_dtype=2,
            out_dtype=5,
            outputs={"Out": ["cast0_out"]},
        )
        shape_op1 = OpConfig(
            "shape",
            inputs={
                "Input": ["shape_x"],
            },
            outputs={"Out": ["shape1_out"]},
        )
        cast_op1 = OpConfig(
            "cast",
            inputs={
                "X": ["shape1_out"],
            },
            in_dtype=2,
            out_dtype=5,
            outputs={"Out": ["cast1_out"]},
        )
        shape_op2 = OpConfig(
            "shape",
            inputs={
                "Input": ["shape_x"],
            },
            outputs={"Out": ["shape2_out"]},
        )
        cast_op2 = OpConfig(
            "cast",
            inputs={
                "X": ["shape2_out"],
            },
            in_dtype=2,
            out_dtype=5,
            outputs={"Out": ["cast2_out"]},
        )
        ops = [shape_op0, cast_op0, shape_op1, cast_op1, shape_op2, cast_op2]

        program_config = ProgramConfig(
            ops=ops,
            weights={},
            inputs={
                "shape_x": TensorConfig(shape=x_shape),
            },
            outputs=["cast0_out", "cast1_out", "cast2_out"],
        )
        return program_config

    def test(self):
        self.run_and_statis(
            quant=False,
            max_examples=25,
            passes=["delete_repeated_ops_pass"],
        )


class TestDeleteRepeatedSlicePass(PassAutoScanTest):
    def sample_predictor_configs(self, program_config):
        config = self.create_inference_config(use_xpu=True)
105
        yield config, ['slice'], (1e-5, 1e-5)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    def sample_program_config(self, draw):
        slice_x = draw(
            st.lists(
                st.integers(min_value=1, max_value=20), min_size=2, max_size=4
            )
        )

        slice_op0 = OpConfig(
            "slice",
            inputs={
                "Input": ["slice_x"],
            },
            starts=[0],
            ends=[1],
            axes=[0],
            decrease_axis=[0],
            outputs={"Out": ["slice0_out"]},
        )
        slice_op1 = OpConfig(
            "slice",
            inputs={
                "Input": ["slice_x"],
            },
            starts=[0],
            ends=[1],
            axes=[0],
            decrease_axis=[0],
            outputs={"Out": ["slice1_out"]},
        )
        slice_op2 = OpConfig(
            "slice",
            inputs={
                "Input": ["slice_x"],
            },
            starts=[0],
            ends=[1],
            axes=[0],
            decrease_axis=[0],
            outputs={"Out": ["slice2_out"]},
        )
147
        ops = [slice_op0, slice_op1, slice_op2]
148 149 150 151 152 153 154

        program_config = ProgramConfig(
            ops=ops,
            weights={},
            inputs={
                "slice_x": TensorConfig(shape=slice_x),
            },
155
            outputs=["slice0_out", "slice1_out", "slice2_out"],
156 157 158 159 160 161 162 163 164 165 166 167 168
        )
        return program_config

    def test(self):
        self.run_and_statis(
            quant=False,
            max_examples=25,
            passes=["delete_repeated_ops_pass"],
        )


if __name__ == "__main__":
    unittest.main()