# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import hypothesis.strategies as st from auto_scan_test import PassAutoScanTest from program_config import OpConfig, ProgramConfig, TensorConfig class TestDeleteRepeatedShapePass(PassAutoScanTest): def sample_predictor_configs(self, program_config): config = self.create_inference_config(use_xpu=True) yield config, ['shape', 'cast', 'cast', 'cast'], (1e-5, 1e-5) def sample_program_config(self, draw): x_shape = draw( st.lists( st.integers(min_value=1, max_value=20), min_size=2, max_size=4 ) ) shape_op0 = OpConfig( "shape", inputs={ "Input": ["shape_x"], }, outputs={"Out": ["shape0_out"]}, ) cast_op0 = OpConfig( "cast", inputs={ "X": ["shape0_out"], }, in_dtype=2, out_dtype=5, outputs={"Out": ["cast0_out"]}, ) shape_op1 = OpConfig( "shape", inputs={ "Input": ["shape_x"], }, outputs={"Out": ["shape1_out"]}, ) cast_op1 = OpConfig( "cast", inputs={ "X": ["shape1_out"], }, in_dtype=2, out_dtype=5, outputs={"Out": ["cast1_out"]}, ) shape_op2 = OpConfig( "shape", inputs={ "Input": ["shape_x"], }, outputs={"Out": ["shape2_out"]}, ) cast_op2 = OpConfig( "cast", inputs={ "X": ["shape2_out"], }, in_dtype=2, out_dtype=5, outputs={"Out": ["cast2_out"]}, ) ops = [shape_op0, cast_op0, shape_op1, cast_op1, shape_op2, cast_op2] program_config = ProgramConfig( ops=ops, weights={}, inputs={ "shape_x": TensorConfig(shape=x_shape), }, outputs=["cast0_out", "cast1_out", "cast2_out"], ) return program_config def test(self): self.run_and_statis( quant=False, max_examples=25, passes=["delete_repeated_ops_pass"], ) class TestDeleteRepeatedSlicePass(PassAutoScanTest): def sample_predictor_configs(self, program_config): config = self.create_inference_config(use_xpu=True) yield config, ['slice'], (1e-5, 1e-5) def sample_program_config(self, draw): slice_x = draw( st.lists( st.integers(min_value=1, max_value=20), min_size=2, max_size=4 ) ) slice_op0 = OpConfig( "slice", inputs={ "Input": ["slice_x"], }, starts=[0], ends=[1], axes=[0], decrease_axis=[0], outputs={"Out": ["slice0_out"]}, ) slice_op1 = OpConfig( "slice", inputs={ "Input": ["slice_x"], }, starts=[0], ends=[1], axes=[0], decrease_axis=[0], outputs={"Out": ["slice1_out"]}, ) slice_op2 = OpConfig( "slice", inputs={ "Input": ["slice_x"], }, starts=[0], ends=[1], axes=[0], decrease_axis=[0], outputs={"Out": ["slice2_out"]}, ) ops = [slice_op0, slice_op1, slice_op2] program_config = ProgramConfig( ops=ops, weights={}, inputs={ "slice_x": TensorConfig(shape=slice_x), }, outputs=["slice0_out", "slice1_out", "slice2_out"], ) return program_config def test(self): self.run_and_statis( quant=False, max_examples=25, passes=["delete_repeated_ops_pass"], ) if __name__ == "__main__": unittest.main()