tensorrt_engine_op_test.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
22
#include "paddle/fluid/inference/analysis/helper.h"
23 24 25
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"

N
nhzlx 已提交
26
USE_CUDA_ONLY_OP(tensorrt_engine);
27 28 29 30 31

namespace paddle {
namespace operators {

namespace {
N
nhzlx 已提交
32 33
void CreateCUDATensor(framework::Scope* scope, const std::string& name,
                      const std::vector<int64_t>& shape) {
34 35 36 37
  auto* var = scope->Var(name);
  auto* tensor = var->GetMutable<framework::LoDTensor>();
  auto dims = framework::make_ddim(shape);
  tensor->Resize(dims);
N
nhzlx 已提交
38 39
  platform::CUDAPlace place;
  platform::CUDADeviceContext ctx(place);
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  inference::tensorrt::RandomizeTensor(tensor, place, ctx);
}

void AddTensorToBlockDesc(framework::proto::BlockDesc* block,
                          const std::string& name,
                          const std::vector<int64_t>& shape) {
  using framework::proto::VarType;
  auto* var = block->add_vars();
  framework::VarDesc desc(name);
  desc.SetType(VarType::LOD_TENSOR);
  desc.SetDataType(VarType::FP32);
  desc.SetShape(shape);
  *var = *desc.Proto();
}

}  // namespace

57 58
using inference::analysis::SetAttr;

59 60 61 62 63 64 65 66
TEST(TensorRTEngineOp, manual) {
  framework::ProgramDesc program;
  auto* block_ = program.Proto()->add_blocks();
  block_->set_idx(0);
  block_->set_parent_idx(-1);

  LOG(INFO) << "create block desc";
  framework::BlockDesc block_desc(&program, block_);
67 68
  LOG(INFO) << "create fc op";
  auto* fc0 = block_desc.AppendOp();
N
nhzlx 已提交
69
  fc0->SetType("fc");
70 71 72
  fc0->SetInput("X", std::vector<std::string>({"x"}));     // 4 x 1 x 1
  fc0->SetInput("Y", std::vector<std::string>({"y"}));     // 4 x 6
  fc0->SetOutput("Out", std::vector<std::string>({"z"}));  // 6 x 1 x 1
73 74

  LOG(INFO) << "create fc op";
75
  auto* fc1 = block_desc.AppendOp();
N
nhzlx 已提交
76
  fc1->SetType("fc");
77 78 79
  fc1->SetInput("X", std::vector<std::string>({"z"}));
  fc1->SetInput("Y", std::vector<std::string>({"y0"}));     // 6 x 8
  fc1->SetOutput("Out", std::vector<std::string>({"z0"}));  // 8 x 1 x 1
80 81

  // Set inputs' variable shape in BlockDesc
82 83
  // the batch size is 2, so the dims of 'x' is {2, 4, 1, 1}
  AddTensorToBlockDesc(block_, "x", std::vector<int64_t>({2, 4, 1, 1}));
84 85 86 87 88
  AddTensorToBlockDesc(block_, "y", std::vector<int64_t>({4, 6}));
  AddTensorToBlockDesc(block_, "y0", std::vector<int64_t>({6, 8}));
  AddTensorToBlockDesc(block_, "z", std::vector<int64_t>({2, 6}));

  // It is wired, need to copy manually.
89 90
  *block_->add_ops() = *fc0->Proto();
  *block_->add_ops() = *fc1->Proto();
91 92 93 94 95 96

  ASSERT_EQ(block_->ops_size(), 2);

  LOG(INFO) << "create tensorrt desc";
  framework::OpDesc engine_op_desc(nullptr);
  engine_op_desc.SetType("tensorrt_engine");
97
  engine_op_desc.SetInput("Xs", std::vector<std::string>({"x"}));
98 99 100
  engine_op_desc.SetOutput("Ys", std::vector<std::string>({"z0"}));
  SetAttr<std::string>(engine_op_desc.Proto(), "subgraph",
                       block_->SerializeAsString());
Y
Yan Chunwei 已提交
101
  SetAttr<int>(engine_op_desc.Proto(), "max_batch", 100);
102
  SetAttr<int>(engine_op_desc.Proto(), "max_workspace", 1 << 10);
Y
Yan Chunwei 已提交
103 104 105
  SetAttr<std::string>(engine_op_desc.Proto(), "engine_uniq_key", "a_engine");
  SetAttr<std::vector<std::string>>(engine_op_desc.Proto(), "parameters",
                                    std::vector<std::string>({}));
N
nhzlx 已提交
106 107
  SetAttr<std::vector<std::string>>(engine_op_desc.Proto(),
                                    "output_name_mapping",
N
nhzlx 已提交
108
                                    std::vector<std::string>({"z0"}));
109 110 111

  LOG(INFO) << "create engine op";
  auto engine_op = framework::OpRegistry::CreateOp(*engine_op_desc.Proto());
Y
Yan Chunwei 已提交
112
  LOG(INFO) << "engine_op " << engine_op.get();
113 114

  framework::Scope scope;
N
nhzlx 已提交
115 116
  platform::CUDAPlace place;
  platform::CUDADeviceContext ctx(place);
117
  // Prepare variables.
N
nhzlx 已提交
118 119 120
  CreateCUDATensor(&scope, "x", std::vector<int64_t>({2, 4}));
  CreateCUDATensor(&scope, "y", std::vector<int64_t>({4, 6}));
  CreateCUDATensor(&scope, "z", std::vector<int64_t>({2, 6}));
121

N
nhzlx 已提交
122 123
  CreateCUDATensor(&scope, "y0", std::vector<int64_t>({6, 8}));
  CreateCUDATensor(&scope, "z0", std::vector<int64_t>({2, 8}));
124 125 126 127 128 129

  // Execute them.
  LOG(INFO) << "engine_op run";
  engine_op->Run(scope, place);
}

Y
Yan Chunwei 已提交
130 131 132
void Execute(int batch_size, int input_dim, int output_dim, int nlayers = 1) {
  framework::ProgramDesc program;
  framework::Scope scope;
N
nhzlx 已提交
133 134
  platform::CUDAPlace place;
  platform::CUDADeviceContext ctx(place);
Y
Yan Chunwei 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

  auto* block_ = program.Proto()->add_blocks();
  block_->set_idx(0);
  block_->set_parent_idx(-1);

  using shape_t = std::vector<int64_t>;

  LOG(INFO) << "create block desc";
  framework::BlockDesc block_desc(&program, block_);

  auto AddFCLayer = [&](const std::string& x_name, const std::string& y_name,
                        const std::string& z_name, bool x_created,
                        const shape_t& x_shape, const shape_t& y_shape,
                        const shape_t& z_shape) {
    LOG(INFO) << "create fc op";
    auto* fc = block_desc.AppendOp();
    fc->SetType("mul");
    fc->SetInput("X", std::vector<std::string>({x_name}));
    fc->SetInput("Y", std::vector<std::string>({y_name}));
    fc->SetOutput("Out", std::vector<std::string>({z_name}));

    // Set inputs' variable shape in BlockDesc
    if (!x_created) {
      AddTensorToBlockDesc(block_, x_name,
                           std::vector<int64_t>({batch_size, input_dim, 1, 1}));
    }
    AddTensorToBlockDesc(block_, y_name,
                         std::vector<int64_t>({input_dim, output_dim}));
    AddTensorToBlockDesc(block_, z_name,
                         std::vector<int64_t>({batch_size, output_dim}));

    // Prepare variables.
    if (!x_created) {
N
nhzlx 已提交
168
      CreateCUDATensor(&scope, x_name, std::vector<int64_t>(x_shape));
Y
Yan Chunwei 已提交
169
    }
N
nhzlx 已提交
170 171
    CreateCUDATensor(&scope, y_name, std::vector<int64_t>(y_shape));
    CreateCUDATensor(&scope, z_name, std::vector<int64_t>(z_shape));
Y
Yan Chunwei 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

    // It is wired, need to copy manually.
    *block_->add_ops() = *fc->Proto();
  };

  // Test with 4 layer FC
  AddFCLayer("x0", "y0", "z0", false, {batch_size, input_dim},
             {input_dim, output_dim}, {batch_size, output_dim});
  AddFCLayer("z0", "y1", "z1", true, {}, {output_dim, output_dim},
             {batch_size, output_dim});
  AddFCLayer("z1", "y2", "z2", true, {}, {output_dim, output_dim},
             {batch_size, output_dim});
  AddFCLayer("z2", "y3", "z3", true, {}, {output_dim, output_dim},
             {batch_size, output_dim});

  LOG(INFO) << "create tensorrt desc";
  framework::OpDesc engine_op_desc(nullptr);
  engine_op_desc.SetType("tensorrt_engine");
  engine_op_desc.SetInput("Xs", std::vector<std::string>({"x0"}));
  engine_op_desc.SetOutput("Ys", std::vector<std::string>({"z3"}));

  SetAttr<std::string>(engine_op_desc.Proto(), "subgraph",
                       block_->SerializeAsString());
  SetAttr<int>(engine_op_desc.Proto(), "max_batch", batch_size);
  SetAttr<int>(engine_op_desc.Proto(), "max_workspace", 2 << 10);
  SetAttr<std::vector<std::string>>(
      engine_op_desc.Proto(), "parameters",
      std::vector<std::string>({"y0", "y1", "y2", "y3"}));
  SetAttr<std::string>(engine_op_desc.Proto(), "engine_uniq_key", "b_engine");

N
nhzlx 已提交
202 203
  SetAttr<std::vector<std::string>>(engine_op_desc.Proto(),
                                    "output_name_mapping",
N
nhzlx 已提交
204 205
                                    std::vector<std::string>({"z3"}));

Y
Yan Chunwei 已提交
206 207 208 209 210 211 212
  auto engine_op = framework::OpRegistry::CreateOp(*engine_op_desc.Proto());

  // Execute them.
  engine_op->Run(scope, place);
}

// Test with a larger FC layer.
Y
Yan Chunwei 已提交
213
TEST(TensorRTEngineOp, fc) { Execute(40, 28, 28); }
Y
Yan Chunwei 已提交
214

215 216 217
}  // namespace operators
}  // namespace paddle

N
nhzlx 已提交
218
USE_TRT_CONVERTER(fc)