slice_op.cc 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class SliceOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
22 23
                  const framework::Scope& scope,
                  bool test_mode) override {
24 25
    // This OP is implemented by trt dynamic shpae plugin.
    // Dynamic shape plugin requires TRT version greater than 6.0.
26 27 28 29
    VLOG(4) << "convert slice op to tensorrt layer";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    auto* input = engine_->GetITensor(op_desc.Input("Input")[0]);
30
    auto output_name = op_desc.Output("Out")[0];
31

32
    float out_scale = 1;
33
    if (op_desc.HasAttr("out_threshold")) {
34
      out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
35 36 37
      engine_->SetTensorDynamicRange(input, out_scale);
    }

38
    std::vector<int> axes =
39
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("axes"));
40
    std::vector<int> starts =
41
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("starts"));
42
    std::vector<int> ends =
43
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ends"));
44 45
    std::vector<int> decrease_axises =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("decrease_axis"));
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    auto input_dims = input->getDimensions();
    if (!engine_->with_dynamic_shape()) {
      // notice that input shape is [CHW] without batch axis when input has
      // static shape
      for (size_t i = input_dims.nbDims; i > 0; i--) {
        input_dims.d[i] = input_dims.d[i - 1];
      }
      input_dims.d[0] = 1;  // fake batchsize, not useful here
      for (size_t i = 0; i < axes.size(); i++) {
        if (starts[i] < 0) {
          starts[i] = std::max(starts[i] + input_dims.d[axes[i]], 0);
        }
        if (ends[i] < 0) {
          ends[i] = std::max(ends[i] + input_dims.d[axes[i]], 0);
        }
        ends[i] = std::min(ends[i], input_dims.d[axes[i]]);
        PADDLE_ENFORCE_GT(
64 65
            ends[i],
            starts[i],
66 67 68
            platform::errors::InvalidArgument(
                "Attr(ends) should be greater than attr(starts) in "
                "slice op. But received ends = %d, starts = %d.",
69 70
                ends[i],
                starts[i]));
71 72 73
      }
    }

74 75
    nvinfer1::ILayer* layer = nullptr;
    if (engine_->with_dynamic_shape()) {
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#if IS_TRT_VERSION_GE(6000)
      auto nchw_input_dims = input->getDimensions();
      nvinfer1::Dims trt_start_dims;
      trt_start_dims.nbDims = nchw_input_dims.nbDims;
      memset(trt_start_dims.d, 0, sizeof(int32_t) * nchw_input_dims.nbDims);
      nvinfer1::Dims trt_size_dims = trt_start_dims;
      nvinfer1::Dims trt_end_dims = trt_start_dims;
      nvinfer1::Dims trt_step_dims = trt_start_dims;
      for (int i = 0; i < trt_step_dims.nbDims; i++) trt_step_dims.d[i] = 1;

      // input : [N,C,H,W]
      bool has_neg_indices = false;
      for (size_t i = 0; i < axes.size(); i++) {
        int trt_axis = axes[i];
        trt_start_dims.d[trt_axis] = starts[i];
        trt_end_dims.d[trt_axis] = ends[i];
        if (starts[i] < 0 || ends[i] < 0) has_neg_indices = true;
      }
      auto* shape_tensor = Shape(input);
      auto* start_tensor = Add1DConstantLayer(trt_start_dims);
      if (has_neg_indices) {
        start_tensor = FixNegIndices(shape_tensor, start_tensor);
      }

      std::vector<nvinfer1::ITensor*> end_vec_tensor;
      for (int i = 0; i < trt_end_dims.nbDims; i++) {
        end_vec_tensor.push_back(GetEleTensorOfShape(shape_tensor, i));
      }

      for (size_t i = 0; i < axes.size(); i++) {
        int trt_axis = axes[i];
        if (ends[i] >= 0) {
          end_vec_tensor[trt_axis] = Add1DConstantLayer(ends[i]);
109
        } else {
110 111
          end_vec_tensor[trt_axis] =
              Sum(end_vec_tensor[trt_axis], Add1DConstantLayer(ends[i]));
112
        }
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
      }

// CI failed in trt 6015 but success in 7134, may be a trt bug
#if IS_TRT_VERSION_GE(7134)
      auto* size_tensor =
          Sub(Min(Concat(end_vec_tensor), shape_tensor), start_tensor);
#else
      auto* size_tensor = Sub(Concat(end_vec_tensor), start_tensor);
#endif

      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Slice, *input, trt_start_dims, trt_size_dims, trt_step_dims);
      layer->setInput(1, *start_tensor);
      layer->setInput(2, *size_tensor);

      if (decrease_axises.size() > 0) {
        std::vector<int32_t> gather_indices;
        for (int i = 0; i < trt_size_dims.nbDims; i++) {
          if (decrease_axises.end() !=
              std::find(decrease_axises.begin(), decrease_axises.end(), i))
            continue;
          gather_indices.push_back(i);
135
        }
136 137 138 139 140
        if (gather_indices.empty())
          gather_indices.push_back(decrease_axises[0]);
        auto real_size_tensor = Gather(size_tensor, gather_indices);
        layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *layer->getOutput(0));
        layer->setInput(1, *real_size_tensor);
141
      }
142 143 144 145 146 147 148 149
#else
      bool with_fp16 =
          engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
      int decrease_axis = decrease_axises.size() == 0 ? -1 : decrease_axises[0];
      plugin::SlicePluginDynamic* plugin = new plugin::SlicePluginDynamic(
          starts, ends, axes, decrease_axis, with_fp16);
      layer = engine_->AddDynamicPlugin(&input, 1, plugin);
#endif
150
    } else {
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#if IS_TRT_VERSION_GE(6000)
      auto chw_input_dims = input->getDimensions();
      nvinfer1::Dims trt_start_dims;
      trt_start_dims.nbDims = chw_input_dims.nbDims;
      memset(trt_start_dims.d, 0, sizeof(int32_t) * chw_input_dims.nbDims);
      nvinfer1::Dims trt_size_dims = chw_input_dims;
      nvinfer1::Dims trt_step_dims;
      trt_step_dims.nbDims = chw_input_dims.nbDims;
      for (int i = 0; i < trt_step_dims.nbDims; i++) trt_step_dims.d[i] = 1;

      // input : [C,H,W]
      for (size_t i = 0; i < axes.size(); i++) {
        int trt_axis = axes[i] - 1;
        trt_start_dims.d[trt_axis] = starts[i];
        trt_size_dims.d[trt_axis] = ends[i] - starts[i];
      }
      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Slice, *input, trt_start_dims, trt_size_dims, trt_step_dims);
      nvinfer1::Dims real_trt_size_dims;
      real_trt_size_dims.nbDims = 0;

      if (decrease_axises.size() > 0) {
        for (size_t i = 0; i < decrease_axises.size(); i++) {
          decrease_axises[i]--;
        }
        for (int i = 0; i < trt_size_dims.nbDims; i++) {
          if (decrease_axises.end() !=
              std::find(decrease_axises.begin(), decrease_axises.end(), i))
            continue;
          real_trt_size_dims.d[real_trt_size_dims.nbDims] = trt_size_dims.d[i];
          real_trt_size_dims.nbDims++;
        }
        if (real_trt_size_dims.nbDims == 0) {
          real_trt_size_dims.nbDims = 1;
          real_trt_size_dims.d[0] = 1;
        }
        auto reshape_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *layer->getOutput(0));
        reshape_layer->setReshapeDimensions(real_trt_size_dims);
        layer = static_cast<nvinfer1::ILayer*>(reshape_layer);
      }
#else
193 194
      bool with_fp16 =
          engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
195
      plugin::SlicePlugin* plugin =
196
          new plugin::SlicePlugin(starts, ends, axes, with_fp16);
197
      layer = engine_->AddPlugin(&input, 1, plugin);
198
#endif
199
    }
200
    RreplenishLayerAndOutput(layer, "slice", {output_name}, test_mode);
201 202 203 204 205 206 207 208
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(slice, SliceOpConverter);