/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h" namespace paddle { namespace inference { namespace tensorrt { class SliceOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { // This OP is implemented by trt dynamic shpae plugin. // Dynamic shape plugin requires TRT version greater than 6.0. VLOG(4) << "convert slice op to tensorrt layer"; framework::OpDesc op_desc(op, nullptr); // Declare inputs auto* input = engine_->GetITensor(op_desc.Input("Input")[0]); auto output_name = op_desc.Output("Out")[0]; float out_scale = 1; if (op_desc.HasAttr("out_threshold")) { out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold")); engine_->SetTensorDynamicRange(input, out_scale); } std::vector axes = BOOST_GET_CONST(std::vector, op_desc.GetAttr("axes")); std::vector starts = BOOST_GET_CONST(std::vector, op_desc.GetAttr("starts")); std::vector ends = BOOST_GET_CONST(std::vector, op_desc.GetAttr("ends")); std::vector decrease_axises = BOOST_GET_CONST(std::vector, op_desc.GetAttr("decrease_axis")); auto input_dims = input->getDimensions(); if (!engine_->with_dynamic_shape()) { // notice that input shape is [CHW] without batch axis when input has // static shape for (size_t i = input_dims.nbDims; i > 0; i--) { input_dims.d[i] = input_dims.d[i - 1]; } input_dims.d[0] = 1; // fake batchsize, not useful here for (size_t i = 0; i < axes.size(); i++) { if (starts[i] < 0) { starts[i] = std::max(starts[i] + input_dims.d[axes[i]], 0); } if (ends[i] < 0) { ends[i] = std::max(ends[i] + input_dims.d[axes[i]], 0); } ends[i] = std::min(ends[i], input_dims.d[axes[i]]); PADDLE_ENFORCE_GT( ends[i], starts[i], platform::errors::InvalidArgument( "Attr(ends) should be greater than attr(starts) in " "slice op. But received ends = %d, starts = %d.", ends[i], starts[i])); } } nvinfer1::ILayer* layer = nullptr; if (engine_->with_dynamic_shape()) { #if IS_TRT_VERSION_GE(6000) auto nchw_input_dims = input->getDimensions(); nvinfer1::Dims trt_start_dims; trt_start_dims.nbDims = nchw_input_dims.nbDims; memset(trt_start_dims.d, 0, sizeof(int32_t) * nchw_input_dims.nbDims); nvinfer1::Dims trt_size_dims = trt_start_dims; nvinfer1::Dims trt_end_dims = trt_start_dims; nvinfer1::Dims trt_step_dims = trt_start_dims; for (int i = 0; i < trt_step_dims.nbDims; i++) trt_step_dims.d[i] = 1; // input : [N,C,H,W] bool has_neg_indices = false; for (size_t i = 0; i < axes.size(); i++) { int trt_axis = axes[i]; trt_start_dims.d[trt_axis] = starts[i]; trt_end_dims.d[trt_axis] = ends[i]; if (starts[i] < 0 || ends[i] < 0) has_neg_indices = true; } auto* shape_tensor = Shape(input); auto* start_tensor = Add1DConstantLayer(trt_start_dims); if (has_neg_indices) { start_tensor = FixNegIndices(shape_tensor, start_tensor); } std::vector end_vec_tensor; for (int i = 0; i < trt_end_dims.nbDims; i++) { end_vec_tensor.push_back(GetEleTensorOfShape(shape_tensor, i)); } for (size_t i = 0; i < axes.size(); i++) { int trt_axis = axes[i]; if (ends[i] >= 0) { end_vec_tensor[trt_axis] = Add1DConstantLayer(ends[i]); } else { end_vec_tensor[trt_axis] = Sum(end_vec_tensor[trt_axis], Add1DConstantLayer(ends[i])); } } // CI failed in trt 6015 but success in 7134, may be a trt bug #if IS_TRT_VERSION_GE(7134) auto* size_tensor = Sub(Min(Concat(end_vec_tensor), shape_tensor), start_tensor); #else auto* size_tensor = Sub(Concat(end_vec_tensor), start_tensor); #endif layer = TRT_ENGINE_ADD_LAYER( engine_, Slice, *input, trt_start_dims, trt_size_dims, trt_step_dims); layer->setInput(1, *start_tensor); layer->setInput(2, *size_tensor); if (decrease_axises.size() > 0) { std::vector gather_indices; for (int i = 0; i < trt_size_dims.nbDims; i++) { if (decrease_axises.end() != std::find(decrease_axises.begin(), decrease_axises.end(), i)) continue; gather_indices.push_back(i); } if (gather_indices.empty()) gather_indices.push_back(decrease_axises[0]); auto real_size_tensor = Gather(size_tensor, gather_indices); layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *layer->getOutput(0)); layer->setInput(1, *real_size_tensor); } #else bool with_fp16 = engine_->WithFp16() && !engine_->disable_trt_plugin_fp16(); int decrease_axis = decrease_axises.size() == 0 ? -1 : decrease_axises[0]; plugin::SlicePluginDynamic* plugin = new plugin::SlicePluginDynamic( starts, ends, axes, decrease_axis, with_fp16); layer = engine_->AddDynamicPlugin(&input, 1, plugin); #endif } else { #if IS_TRT_VERSION_GE(6000) auto chw_input_dims = input->getDimensions(); nvinfer1::Dims trt_start_dims; trt_start_dims.nbDims = chw_input_dims.nbDims; memset(trt_start_dims.d, 0, sizeof(int32_t) * chw_input_dims.nbDims); nvinfer1::Dims trt_size_dims = chw_input_dims; nvinfer1::Dims trt_step_dims; trt_step_dims.nbDims = chw_input_dims.nbDims; for (int i = 0; i < trt_step_dims.nbDims; i++) trt_step_dims.d[i] = 1; // input : [C,H,W] for (size_t i = 0; i < axes.size(); i++) { int trt_axis = axes[i] - 1; trt_start_dims.d[trt_axis] = starts[i]; trt_size_dims.d[trt_axis] = ends[i] - starts[i]; } layer = TRT_ENGINE_ADD_LAYER( engine_, Slice, *input, trt_start_dims, trt_size_dims, trt_step_dims); nvinfer1::Dims real_trt_size_dims; real_trt_size_dims.nbDims = 0; if (decrease_axises.size() > 0) { for (size_t i = 0; i < decrease_axises.size(); i++) { decrease_axises[i]--; } for (int i = 0; i < trt_size_dims.nbDims; i++) { if (decrease_axises.end() != std::find(decrease_axises.begin(), decrease_axises.end(), i)) continue; real_trt_size_dims.d[real_trt_size_dims.nbDims] = trt_size_dims.d[i]; real_trt_size_dims.nbDims++; } if (real_trt_size_dims.nbDims == 0) { real_trt_size_dims.nbDims = 1; real_trt_size_dims.d[0] = 1; } auto reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *layer->getOutput(0)); reshape_layer->setReshapeDimensions(real_trt_size_dims); layer = static_cast(reshape_layer); } #else bool with_fp16 = engine_->WithFp16() && !engine_->disable_trt_plugin_fp16(); plugin::SlicePlugin* plugin = new plugin::SlicePlugin(starts, ends, axes, with_fp16); layer = engine_->AddPlugin(&input, 1, plugin); #endif } RreplenishLayerAndOutput(layer, "slice", {output_name}, test_mode); } }; } // namespace tensorrt } // namespace inference } // namespace paddle REGISTER_TRT_OP_CONVERTER(slice, SliceOpConverter);