generate_proposals_op.cc 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

struct AppendProposalsFunctor {
  LoDTensor *out_;
  int64_t offset_;
  Tensor *to_add_;

  AppendProposalsFunctor(LoDTensor *out, int64_t offset, Tensor *to_add)
      : out_(out), offset_(offset), to_add_(to_add) {}

  template <typename T>
D
dzhwinter 已提交
36
  void apply() const {
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    auto *out_data = out_->data<T>();
    auto *to_add_data = to_add_->data<T>();
    memcpy(out_data + offset_, to_add_data, to_add_->numel() * sizeof(T));
  }
};

class GenerateProposalsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Scores"), "Input(Scores) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("BboxDeltas"),
                   "Input(BboxDeltas) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("ImInfo"), "Input(ImInfo) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Anchors"),
                   "Input(Anchors) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Variances"),
                   "Input(Variances) shouldn't be null.");

    auto scores_dims = ctx->GetInputDim("Scores");
    auto bbox_deltas_dims = ctx->GetInputDim("BboxDeltas");
    auto im_info_dims = ctx->GetInputDim("ImInfo");
    auto anchors_dims = ctx->GetInputDim("Anchors");
    auto variances_dims = ctx->GetInputDim("Variances");

    ctx->SetOutputDim("RpnRois", {-1, 4});
    ctx->SetOutputDim("RpnRoiProbs", {-1, 1});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("Anchors")->type()),
        platform::CPUPlace());
  }
};

template <class T>
void BoxCoder(const platform::DeviceContext &ctx, Tensor *all_anchors,
              Tensor *bbox_deltas, Tensor *variances, Tensor *proposals) {
  T *proposals_data = proposals->mutable_data<T>(ctx.GetPlace());

  int64_t row = all_anchors->dims()[0];
  int64_t len = all_anchors->dims()[1];

  auto *bbox_deltas_data = bbox_deltas->data<T>();
  auto *anchor_data = all_anchors->data<T>();
  const T *variances_data = nullptr;
  if (variances) {
    variances_data = variances->data<T>();
  }

  for (int64_t i = 0; i < row; ++i) {
    T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len];
    T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1];

    T anchor_center_x = (anchor_data[i * len + 2] + anchor_data[i * len]) / 2;
    T anchor_center_y =
        (anchor_data[i * len + 3] + anchor_data[i * len + 1]) / 2;

    T bbox_center_x = 0, bbox_center_y = 0;
    T bbox_width = 0, bbox_height = 0;

    if (variances) {
      bbox_center_x =
          variances_data[i * len] * bbox_deltas_data[i * len] * anchor_width +
          anchor_center_x;
      bbox_center_y = variances_data[i * len + 1] *
                          bbox_deltas_data[i * len + 1] * anchor_height +
                      anchor_center_y;
      bbox_width = std::exp(variances_data[i * len + 2] *
                            bbox_deltas_data[i * len + 2]) *
                   anchor_width;
      bbox_height = std::exp(variances_data[i * len + 3] *
                             bbox_deltas_data[i * len + 3]) *
                    anchor_height;
    } else {
      bbox_center_x =
          bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
      bbox_center_y =
          bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;
      bbox_width = std::exp(bbox_deltas_data[i * len + 2]) * anchor_width;
      bbox_height = std::exp(bbox_deltas_data[i * len + 3]) * anchor_height;
    }

    proposals_data[i * len] = bbox_center_x - bbox_width / 2;
    proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
    proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2;
    proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2;
  }
  // return proposals;
}

template <class T>
void ClipTiledBoxes(const platform::DeviceContext &ctx, const Tensor &im_info,
                    Tensor *boxes) {
  T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
  const T *im_info_data = im_info.data<T>();
  for (int64_t i = 0; i < boxes->numel(); ++i) {
    if (i % 4 == 0) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), 0.0f);
    } else if (i % 4 == 1) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), 0.0f);
    } else if (i % 4 == 2) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), 0.0f);
    } else {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), 0.0f);
    }
  }
}

template <class T>
void FilterBoxes(const platform::DeviceContext &ctx, Tensor *boxes,
                 float min_size, const Tensor &im_info, Tensor *keep) {
  const T *im_info_data = im_info.data<T>();
  T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
  min_size *= im_info_data[2];
  keep->Resize({boxes->dims()[0], 1});
  int *keep_data = keep->mutable_data<int>(ctx.GetPlace());

  int keep_len = 0;
  for (int i = 0; i < boxes->dims()[0]; ++i) {
    T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1;
    T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1;
    T x_ctr = boxes_data[4 * i] + ws / 2;
    T y_ctr = boxes_data[4 * i + 1] + hs / 2;
    if (ws >= min_size && hs >= min_size && x_ctr <= im_info_data[1] &&
        y_ctr <= im_info_data[0]) {
      keep_data[keep_len++] = i;
    }
  }
  keep->Resize({keep_len});
}

bool SortScorePairDescend(const std::pair<float, int> &pair1,
                          const std::pair<float, int> &pair2) {
  return pair1.first > pair2.first;
}

template <class T>
void GetMaxScoreIndex(const std::vector<T> &scores,
                      std::vector<std::pair<T, int>> *sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    sorted_indices->push_back(std::make_pair(scores[i], i));
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
                   SortScorePairDescend);
}

template <class T>
T BBoxArea(const T *box, const bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
T JaccardOverlap(const T *box1, const T *box2, const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    const T inter_w = inter_xmax - inter_xmin;
    const T inter_h = inter_ymax - inter_ymin;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

template <class T>
Tensor NMS(const platform::DeviceContext &ctx, Tensor *bbox, Tensor *scores,
           const T nms_threshold, const float eta) {
  PADDLE_ENFORCE_NOT_NULL(bbox);
  int64_t num_boxes = bbox->dims()[0];
  // 4: [xmin ymin xmax ymax]
  int64_t box_size = bbox->dims()[1];

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores->data<T>(), num_boxes, scores_data.begin());
  std::vector<std::pair<T, int>> sorted_indices;
  GetMaxScoreIndex<T>(scores_data, &sorted_indices);

  std::vector<int> selected_indices;
  int selected_num = 0;
  T adaptive_threshold = nms_threshold;
  const T *bbox_data = bbox->data<T>();
  bool flag;
  while (sorted_indices.size() != 0) {
    int idx = sorted_indices.front().second;
    flag = true;
    for (size_t k = 0; k < selected_indices.size(); ++k) {
      if (flag) {
        const int kept_idx = selected_indices[k];
        T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size, false);
        flag = (overlap <= adaptive_threshold);
      } else {
        break;
      }
    }
    if (flag) {
      selected_indices.push_back(idx);
      selected_num++;
    }
    sorted_indices.erase(sorted_indices.begin());
    if (flag && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
  Tensor keep_nms;
  keep_nms.Resize({selected_num});
  int *keep_data = keep_nms.mutable_data<int>(ctx.GetPlace());
  for (int i = 0; i < selected_num; ++i) {
    keep_data[i] = selected_indices[i];
  }

  return keep_nms;
}

template <typename DeviceContext, typename T>
class GenerateProposalsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *scores = context.Input<Tensor>("Scores");
    auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
    auto *im_info = context.Input<Tensor>("ImInfo");
    auto *anchors = context.Input<Tensor>("Anchors");
    auto *variances = context.Input<Tensor>("Variances");

    auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
    auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");

    int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
    int post_nms_top_n = context.Attr<int>("post_nms_topN");
    float nms_thresh = context.Attr<float>("nms_thresh");
    float min_size = context.Attr<float>("min_size");
    float eta = context.Attr<float>("eta");

    auto &dev_ctx = context.template device_context<DeviceContext>();

    auto scores_dim = scores->dims();
    int64_t num = scores_dim[0];
    int64_t c_score = scores_dim[1];
    int64_t h_score = scores_dim[2];
    int64_t w_score = scores_dim[3];

    auto bbox_dim = bbox_deltas->dims();
    int64_t c_bbox = bbox_dim[1];
    int64_t h_bbox = bbox_dim[2];
    int64_t w_bbox = bbox_dim[3];

    rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
                              context.GetPlace());
314
    rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

    Tensor bbox_deltas_swap, scores_swap;
    bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
                                     dev_ctx.GetPlace());
    scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
                                dev_ctx.GetPlace());

    math::Transpose<DeviceContext, T, 4> trans;
    std::vector<int> axis = {0, 2, 3, 1};
    trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
    trans(dev_ctx, *scores, &scores_swap, axis);

    framework::LoD lod;
    std::vector<size_t> lod0(1, 0);
    Tensor *anchor = const_cast<framework::Tensor *>(anchors);
    anchor->Resize({anchors->numel() / 4, 4});
    Tensor *var = const_cast<framework::Tensor *>(variances);
    var->Resize({var->numel() / 4, 4});

    int64_t num_proposals = 0;
    for (int64_t i = 0; i < num; ++i) {
      Tensor im_info_slice = im_info->Slice(i, i + 1);
      Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
      Tensor scores_slice = scores_swap.Slice(i, i + 1);

      bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
      scores_slice.Resize({h_score * w_score * c_score, 1});

      std::pair<Tensor, Tensor> tensor_pair =
          ProposalForOneImage(dev_ctx, im_info_slice, *anchor, *var,
                              bbox_deltas_slice, scores_slice, pre_nms_top_n,
                              post_nms_top_n, nms_thresh, min_size, eta);
      Tensor proposals = tensor_pair.first;
      Tensor scores = tensor_pair.second;

      framework::VisitDataType(
          framework::ToDataType(rpn_rois->type()),
          AppendProposalsFunctor(rpn_rois, 4 * num_proposals, &proposals));
      framework::VisitDataType(
          framework::ToDataType(rpn_roi_probs->type()),
          AppendProposalsFunctor(rpn_roi_probs, num_proposals, &scores));

      num_proposals += proposals.dims()[0];
      lod0.emplace_back(num_proposals);
    }

    lod.emplace_back(lod0);
    rpn_rois->set_lod(lod);
    rpn_roi_probs->set_lod(lod);
    rpn_rois->Resize({num_proposals, 4});
    rpn_roi_probs->Resize({num_proposals, 1});
  }

  std::pair<Tensor, Tensor> ProposalForOneImage(
      const DeviceContext &ctx, const Tensor &im_info_slice,
      const Tensor &anchors, const Tensor &variances,
      const Tensor &bbox_deltas_slice,  // [M, 4]
      const Tensor &scores_slice,       // [N, 1]
      int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
      float eta) const {
    auto *scores_data = scores_slice.data<T>();

    // Sort index
    Tensor index_t;
    index_t.Resize({scores_slice.numel()});
    int *index = index_t.mutable_data<int>(ctx.GetPlace());
    for (int i = 0; i < scores_slice.numel(); ++i) {
      index[i] = i;
    }
    std::function<bool(const int64_t &, const int64_t &)> compare =
        [scores_data](const int64_t &i, const int64_t &j) {
          return scores_data[i] > scores_data[j];
        };

    if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
      std::sort(index, index + scores_slice.numel(), compare);
    } else {
      std::nth_element(index, index + pre_nms_top_n,
                       index + scores_slice.numel(), compare);
      index_t.Resize({pre_nms_top_n});
    }

    Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
    scores_sel.mutable_data<T>({index_t.numel(), 1}, ctx.GetPlace());
    bbox_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    anchor_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    var_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());

    CPUGather<T>(ctx, scores_slice, index_t, &scores_sel);
    CPUGather<T>(ctx, bbox_deltas_slice, index_t, &bbox_sel);
    CPUGather<T>(ctx, anchors, index_t, &anchor_sel);
    CPUGather<T>(ctx, variances, index_t, &var_sel);

    Tensor proposals;
    proposals.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    BoxCoder<T>(ctx, &anchor_sel, &bbox_sel, &var_sel, &proposals);

    ClipTiledBoxes<T>(ctx, im_info_slice, &proposals);

    Tensor keep;
    FilterBoxes<T>(ctx, &proposals, min_size, im_info_slice, &keep);

    Tensor scores_filter;
    bbox_sel.mutable_data<T>({keep.numel(), 4}, ctx.GetPlace());
    scores_filter.mutable_data<T>({keep.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, proposals, keep, &bbox_sel);
    CPUGather<T>(ctx, scores_sel, keep, &scores_filter);
    if (nms_thresh <= 0) {
423
      return std::make_pair(bbox_sel, scores_filter);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    }

    Tensor keep_nms = NMS<T>(ctx, &bbox_sel, &scores_filter, nms_thresh, eta);

    if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
      keep_nms.Resize({post_nms_top_n});
    }

    proposals.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
    scores_sel.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, bbox_sel, keep_nms, &proposals);
    CPUGather<T>(ctx, scores_filter, keep_nms, &scores_sel);

    return std::make_pair(proposals, scores_sel);
  }
};

class GenerateProposalsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Scores", "The scores of anchors should be foreground.");
    AddInput("BboxDeltas", "bbox_deltas.");
    AddInput("ImInfo", "Information for image reshape.");
    AddInput("Anchors", "All anchors.");
    AddInput("Variances", " variances");

    AddOutput("RpnRois", "Anchors.");
    AddOutput("RpnRoiProbs", "Anchors.");
    AddAttr<int>("pre_nms_topN", "pre_nms_topN");
    AddAttr<int>("post_nms_topN", "post_nms_topN");
    AddAttr<float>("nms_thresh", "nms_thres");
    AddAttr<float>("min_size", "min size");
    AddAttr<float>("eta", "eta");
    AddComment(R"DOC(
Generate Proposals OP

This operator proposes rois according to each box with their probability to be a foreground object and 
the box can be calculated by anchors. Bbox_deltais and scores are the output of RPN. Final proposals
could be used to train detection net.

Scores is the probability for each box to be an object. In format of (N, A, H, W) where N is batch size, A is number
of anchors, H and W are height and width of the feature map.
BboxDeltas is the differece between predicted box locatoin and anchor location. In format of (N, 4*A, H, W)

For generating proposals, this operator transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4) and 
 calculate box locations as proposals candidates. Then clip boxes to image and remove predicted boxes with small area. 
Finally, apply nms to get final proposals as output.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(generate_proposals, ops::GenerateProposalsOp,
                  ops::GenerateProposalsOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
    generate_proposals,
    ops::GenerateProposalsKernel<paddle::platform::CPUDeviceContext, float>);