framework.py 156.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40 41 42
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
43
    'name_scope',
S
sneaxiy 已提交
44 45 46
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
47
    'in_dygraph_mode',
C
chengduo 已提交
48
    'is_compiled_with_cuda',
49
    'Variable',
50
    'load_op_library',
51
]
Y
Yu Yang 已提交
52

Q
qiaolongfei 已提交
53 54 55 56
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
57 58
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
59 60
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
61 62


L
lujun 已提交
63
def in_dygraph_mode():
L
lujun 已提交
64
    """
65 66
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
67 68

    Returns:
69
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
70 71 72 73

    Examples:
        .. code-block:: python

74
            import paddle.fluid as fluid
L
lujun 已提交
75
            if fluid.in_dygraph_mode():
76 77 78
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
79 80

    """
L
lujun 已提交
81
    return _dygraph_tracer_ is not None
82 83


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
106 107
def _dygraph_tracer():
    return _dygraph_tracer_
108

W
Wu Yi 已提交
109

M
minqiyang 已提交
110
def _current_expected_place():
L
lujun 已提交
111
    return _dygraph_current_expected_place_
M
minqiyang 已提交
112 113


S
sneaxiy 已提交
114
def _cpu_num():
115
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
116 117 118 119 120 121 122 123
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
124
        os.environ['CPU_NUM'] = str(1)
125
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
126 127 128 129 130 131 132 133 134 135
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
136 137


C
chengduo 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
153
def cuda_places(device_ids=None):
L
lujun 已提交
154
    """
155 156 157 158 159
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
160 161

    If :code:`device_ids` is None, environment variable of
162
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
163 164 165
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
166
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
167 168

    If :code:`device_ids` is not None, it should be the device
169
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
170 171 172
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
173 174
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
175 176

    Returns:
177
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
178 179 180 181

    Examples:
        .. code-block:: python

182
            import paddle.fluid as fluid
L
lujun 已提交
183 184 185
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
186 187 188
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
189
        device_ids = _cuda_ids()
S
sneaxiy 已提交
190 191 192 193 194 195
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
196
    """
197
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
198 199 200
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
201 202
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
203 204
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
205

206 207
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
208 209

    Returns:
210
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
211 212 213 214

    Examples:
        .. code-block:: python

215
            import paddle.fluid as fluid
L
lujun 已提交
216 217 218
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
219 220 221 222 223 224
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
225
    """
226
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
227 228 229

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
230 231 232 233
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
234

235 236
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
237 238

    Returns:
239
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
240 241 242 243

    Examples:
        .. code-block:: python

244
            import paddle.fluid as fluid
L
lujun 已提交
245 246 247 248 249
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
250 251 252 253 254 255 256
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
283
@signature_safe_contextmanager
284 285 286 287
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

288 289 290
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
291 292

    Args:
293
        prefix(str, optional): prefix. Default is none.
294 295 296

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
297

298
          import paddle.fluid as fluid
299
          with fluid.name_scope("s1"):
300 301 302 303 304 305
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
306
          with fluid.name_scope("s1"):
307
                f = fluid.layers.pow(d, 2.0)
308
          with fluid.name_scope("s4"):
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
328 329
    """
    # TODO(panyx0718): Only [0-9a-z].
330 331 332 333 334 335 336 337 338
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
339 340 341 342 343 344 345 346 347 348 349 350


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
351 352 353
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
354 355 356 357


def grad_var_name(var_name):
    """
358 359
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
360 361 362
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
363

364
def convert_np_dtype_to_dtype_(np_dtype):
365 366
    """
    Convert the data type in numpy to the data type in Paddle
367

368
    Args:
369
        np_dtype(np.dtype): the data type in numpy.
370

371 372
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
373 374

    """
375 376
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
377
        return core.VarDesc.VarType.FP32
378
    elif dtype == np.float64:
379
        return core.VarDesc.VarType.FP64
380
    elif dtype == np.float16:
381
        return core.VarDesc.VarType.FP16
382
    elif dtype == np.int32:
383
        return core.VarDesc.VarType.INT32
384
    elif dtype == np.int16:
385
        return core.VarDesc.VarType.INT16
386
    elif dtype == np.int64:
387
        return core.VarDesc.VarType.INT64
388
    elif dtype == np.bool:
389
        return core.VarDesc.VarType.BOOL
390 391
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
392 393
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
394 395
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
396
    else:
M
minqiyang 已提交
397
        raise ValueError("Not supported numpy dtype %s" % dtype)
398 399 400


def dtype_is_floating(dtype):
401 402 403
    """
    Check the data type is floating or not.
    Args:
404
        dtype(np.dtype|core.VarDesc.VarType): data type.
405 406 407 408 409
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
410
    if not isinstance(dtype, core.VarDesc.VarType):
411 412
        dtype = convert_np_dtype_to_dtype_(dtype)

413 414 415 416
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
417 418


Y
Yang Yang(Tony) 已提交
419
def _debug_string_(proto, throw_on_error=True):
420 421 422 423 424 425 426 427 428 429 430
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
431
    error_fields = list()
Y
Yang Yang(Tony) 已提交
432
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
433 434
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
435 436 437
    return proto.__str__()


X
Xin Pan 已提交
438
class Variable(object):
439
    """
440
    **Notes**:
441
        **The constructor of Variable should not be invoked directly.**
442

443 444
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

445 446 447
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
448
    cases, variables are used for holding different kinds of data or training
449 450
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
451

452
    There are many kinds of variables. Each kind of them has its own attributes
453
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
454

455
    Most of a Variable's member variables can be setted to be None. It mean
456
    it is not available or will be specified later.
457

458
    Examples:
459 460
        In Static Graph Mode:

461 462
        .. code-block:: python

463
            import paddle.fluid as fluid
464
            cur_program = fluid.Program()
465 466 467 468
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
469
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
470 471 472 473 474 475 476 477 478

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

479 480
    """

Y
Yu Yang 已提交
481 482
    def __init__(self,
                 block,
Y
Yu Yang 已提交
483
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
484 485 486 487
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
488
                 capacity=None,
Q
QI JUN 已提交
489
                 persistable=None,
F
fengjiayi 已提交
490
                 error_clip=None,
Y
Yu Yang 已提交
491
                 stop_gradient=False,
F
fengjiayi 已提交
492
                 is_data=False,
H
Huihuang Zheng 已提交
493
                 need_check_feed=False,
Y
Yu Yang 已提交
494
                 **kwargs):
Y
Yu Yang 已提交
495 496
        self.block = block
        if name is None:
Y
Yu Yang 已提交
497
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
498

Y
Yu Yang 已提交
499
        if dtype is not None:
500
            if not isinstance(dtype, core.VarDesc.VarType):
501
                dtype = convert_np_dtype_to_dtype_(dtype)
502

L
lujun 已提交
503
        if in_dygraph_mode():
M
minqiyang 已提交
504
            # record vars in tracer rather than blocks
M
minqiyang 已提交
505
            self._ivar = kwargs.get("ivar", None)
506
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
507
            if not self._ivar:
508
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
509 510 511
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
512
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
513
                    if persistable else False)
M
minqiyang 已提交
514
            if persistable:
L
lujun 已提交
515
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
516
            self.op = None
M
minqiyang 已提交
517
        else:
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
582 583 584
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

585 586 587 588 589 590 591 592
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
593
            self.block.vars[name] = self
594
            self.op = None
595
            self._stop_gradient = stop_gradient
596
            self.is_data = is_data
Y
Yu Yang 已提交
597

598
    @dygraph_only
599 600
    def detach(self):
        """
601 602
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
603

604
        Returns a new Variable, detached from the current graph.
605

606
        Returns:
607
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
608

609

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

637
    @dygraph_only
638
    def numpy(self):
639
        """
640 641
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
642

643
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
644 645 646 647 648

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
649
            ndarray: dtype is same as current Variable
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
671
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
672
        return np.array(new_ivar.value().get_tensor())
673

674 675 676
    @dygraph_only
    def set_value(self, value):
        """
677 678 679
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
        assert isinstance(value, (Variable, np.ndarray))
        if list(value.shape) != list(self.shape):
            raise ValueError(
                "The shape of the new value must be the same as that of the original Variable."
            )
        self_tensor = self._ivar.value().get_tensor()
        if isinstance(value, Variable):
            value = value._ivar.value().get_tensor().__array__()
        self_tensor.set(value, _current_expected_place())

713
    @dygraph_only
714
    def backward(self, backward_strategy=None):
715
        """
716 717
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
718 719 720

        Run backward of current Graph which starts from current Variable

721 722
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
723

724 725
        Returns:
            NoneType: None
726 727 728 729 730 731 732 733 734 735 736 737

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
738 739
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
740 741 742 743 744 745 746 747 748
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
749 750 751 752 753
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
754

J
Jiabin Yang 已提交
755 756 757 758
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
759

760
    @dygraph_only
761
    def gradient(self):
762
        """
763 764
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
765 766 767

        Get the Gradient of Current Variable

768 769
        Returns:
            ndarray: Numpy value of the gradient of current Variable
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
        if not self._ivar._grad_ivar().value().get_tensor()._is_initialized():
            raise ValueError(
                "%s's Grad is Empty, Please check if it has no data in" %
                self.name)
800 801
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
802

803
    @dygraph_only
804
    def clear_gradient(self):
805
        """
806 807 808 809
        **Notes**:
            **1. This API is ONLY avaliable in Dygraph mode**

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
810

811
        Clear  (set to ``0`` ) the Gradient of Current Variable
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
838
        self._ivar._clear_gradient()
X
Xin Pan 已提交
839

840
    def __str__(self):
Y
Yang Yang(Tony) 已提交
841 842
        return self.to_string(True)

F
update  
fengjiayi 已提交
843
    def to_string(self, throw_on_error, with_details=False):
844 845 846
        """
        Get debug string.

847 848 849 850 851
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
852

853 854
        Returns:
            str: The debug string.
855 856 857 858 859

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
860

861 862 863 864 865
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
866
                print(new_variable.to_string(True))
867
                print("=============with detail===============")
868
                print(new_variable.to_string(True, True))
869
        """
L
lujun 已提交
870
        if in_dygraph_mode():
L
lujun 已提交
871
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
872 873 874 875 876 877 878
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
879

F
update  
fengjiayi 已提交
880 881
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
882
        protostr = self.desc.serialize_to_string()
883
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
884 885 886 887
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
888 889 890
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
891
        return res_str
892 893 894

    __repr__ = __str__

895
    @property
896
    def stop_gradient(self):
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
                fc = fluid.FC("fc1", size=5, dtype="float32")
                fc2 = fluid.FC("fc2", size=3, dtype="float32")
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
                out1 = fc(a)
                out2 = fc2(b)
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

                assert (fc._w.gradient() == 0).all()
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
926
        if in_dygraph_mode():
M
minqiyang 已提交
927 928
            return self._ivar.stop_gradient
        else:
929
            return self._stop_gradient
930

931 932
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
933
        if in_dygraph_mode():
M
minqiyang 已提交
934
            self._ivar.stop_gradient = s
935
        else:
936
            self._stop_gradient = s
937

938 939
    @property
    def persistable(self):
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
961
        if in_dygraph_mode():
962 963 964
            return self._ivar.persistable
        else:
            return self.desc.persistable()
965

Y
Yu Yang 已提交
966 967
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
968
        if in_dygraph_mode():
969 970 971
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
972 973
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
974

Y
Yu Yang 已提交
975 976
    @property
    def name(self):
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
993
        if in_dygraph_mode():
994 995 996
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
997

T
typhoonzero 已提交
998 999
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1000
        if in_dygraph_mode():
1001 1002 1003
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1004

Y
Yu Yang 已提交
1005 1006
    @property
    def shape(self):
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1024
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1025
        if in_dygraph_mode():
1026 1027 1028
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1029 1030

    @property
F
fengjiayi 已提交
1031
    def dtype(self):
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1048
        if in_dygraph_mode():
1049 1050 1051
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1052 1053

    @property
1054
    @dygraph_not_support
Y
Yu Yang 已提交
1055
    def lod_level(self):
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1077
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1078 1079
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1080
        return self.desc.lod_level()
Y
Yu Yang 已提交
1081

Y
Yu Yang 已提交
1082 1083
    @property
    def type(self):
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1100
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1101
            return self._ivar.type
1102 1103
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1104

W
Wu Yi 已提交
1105
    def _set_error_clip(self, error_clip):
1106 1107 1108 1109 1110 1111 1112 1113 1114
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1115 1116
        self.error_clip = error_clip

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1204
    def _cloneVar(self, copy=False):
1205 1206
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1207 1208
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1209 1210 1211 1212
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1213
        new_var = self._cloneVar()
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1224
        new_var = self._cloneVar()
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1235
                return self._cloneVar(True)
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1254
                return self._cloneVar(True)
1255
            index = int(item)
1256
            if (index > 0 and index >= self.shape[axis]) \
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
        def fill_constant(shape, dtype, value, force_cpu=False, out=None):
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
                    'force_cpu': force_cpu or force_init_on_cpu()
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1322
            else:
H
Hongyu Liu 已提交
1323 1324 1325
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
                    fill_constant([1], 'int32', 1, force_cpu=True, out=temp_1)
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
        infer_flags = list(1 for i in range(len(slice_axis)))

        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

        out = self
        if len(slice_axis) > 0:
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1405
                inputs=inputs,
H
Hongyu Liu 已提交
1406
                outputs={'Out': [slice_out_var]},
1407
                attrs=attrs)
H
Hongyu Liu 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1425

Y
Yu Yang 已提交
1426

F
fengjiayi 已提交
1427 1428 1429
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1430

1431 1432
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1433 1434 1435 1436
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1437
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1438 1439 1440 1441 1442
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1443 1444 1445 1446
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1456
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1457 1458 1459 1460 1461 1462
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1463 1464 1465 1466 1467 1468 1469 1470
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1471 1472
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1473 1474
        return self.op_proto_map[type]

1475 1476 1477 1478 1479 1480
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1481 1482 1483 1484
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1485
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1486 1487
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1488 1489
        }

F
fengjiayi 已提交
1490

X
Xin Pan 已提交
1491
class Operator(object):
1492
    """
1493 1494 1495 1496 1497 1498 1499
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1500
        type(str): The type of operator. Default None.
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1521
        Block.append_op or Block._prepend_op instead.
1522 1523 1524 1525

    Examples:
        .. code-block:: python

1526
            import paddle.fluid as fluid
1527
            cur_program = fluid.Program()
1528 1529 1530 1531 1532
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1533
    """
1534
    OP_WITHOUT_KERNEL_SET = {
1535 1536
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1537 1538
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1539
        'c_sync_comm_stream'
1540
    }
1541

Y
Yu Yang 已提交
1542 1543
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1544
                 desc,
Y
Yu Yang 已提交
1545 1546 1547
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1548
                 attrs=None):
L
lujun 已提交
1549
        if in_dygraph_mode():
1550 1551
            if type is None:
                raise ValueError(
1552
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1553
            self._type = type
M
minqiyang 已提交
1554
            self.attrs = attrs if attrs else {}
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1569
                )] = self.block.program._op_role
1570 1571 1572

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1573 1574
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1575 1576 1577 1578 1579 1580 1581 1582

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1583
                    "`type` to initialized an Operator can not be None.")
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1615
                        for index, arg in enumerate(in_args):
1616 1617 1618 1619
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1620
                            elif isinstance(arg, Variable):
1621
                                in_arg_names.append(cpt.to_text(arg.name))
1622 1623 1624 1625
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1652
                        if not in_dygraph_mode():
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1672
    def _has_kernel(self, op_type):
1673 1674
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1675
    def to_string(self, throw_on_error):
1676
        """
1677 1678
        Get debug string.

1679
        Args:
1680 1681
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1682

1683 1684
        Returns:
            str: The debug string.
1685 1686

        """
1687
        protostr = self.desc.serialize_to_string()
1688
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1689 1690 1691 1692
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1693 1694 1695

    __repr__ = __str__

F
fengjiayi 已提交
1696 1697
    @property
    def type(self):
L
lujun 已提交
1698
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1699
            return self._type
1700 1701
        else:
            return self.desc.type()
F
fengjiayi 已提交
1702 1703

    def input(self, name):
1704
        """
1705
        Get the input arguments according to the input parameter name.
1706

1707 1708
        Args:
            name(str): The input parameter name.
1709

1710 1711 1712
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1713
        """
F
fengjiayi 已提交
1714 1715
        return self.desc.input(name)

W
Wu Yi 已提交
1716
    def _rename_input(self, old_name, new_name):
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1727
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1728

W
Wu Yi 已提交
1729
    def _rename_output(self, old_name, new_name):
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1740
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1741

F
fengjiayi 已提交
1742 1743 1744 1745
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1746 1747 1748 1749 1750 1751 1752 1753
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1754
    def output(self, name):
1755
        """
1756
        Get output arguments by the output parameter name.
1757

1758 1759
        Args:
            name(str): The output parameter name.
1760

1761 1762 1763
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1764
        """
F
fengjiayi 已提交
1765 1766 1767 1768 1769 1770
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1771 1772 1773 1774 1775 1776 1777 1778
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1779
    def has_attr(self, name):
1780
        """
1781 1782
        Whether this Operator has the attribute with name or not.

1783
        Args:
1784
            name(str): the attribute name.
1785

1786 1787
        Returns:
            bool: True if has this attribute.
1788 1789

        """
F
fengjiayi 已提交
1790 1791 1792
        return self.desc.has_attr(name)

    def attr_type(self, name):
1793
        """
1794
        Get the type of attribute by attribute's name.
1795

1796 1797
        Args:
            name(str): the attribute name.
1798

1799 1800
        Returns:
            core.AttrType: the attribute type.
1801
        """
F
fengjiayi 已提交
1802 1803
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1804
    def _set_attr(self, name, val):
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1815 1816
        self._update_desc_attr(name, val)

1817 1818 1819
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1831 1832
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1833 1834
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1835
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1836 1837 1838 1839
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1840
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1841

F
fengjiayi 已提交
1842 1843 1844 1845 1846
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1847
        """
1848 1849
        Get the attribute by name.

1850
        Args:
1851
            name(str): the attribute name.
1852

1853 1854
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1855 1856
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1857
        return self.desc.attr(name)
Y
Yu Yang 已提交
1858

W
Wu Yi 已提交
1859
    def _block_attr_id(self, name):
1860
        """
G
gongweibao 已提交
1861
        Get the block attribute's id by name.
1862

1863 1864
        Args:
            name(str): the attribute name.
1865

1866 1867
        Returns:
            int: the block index.
1868
        """
W
Wu Yi 已提交
1869
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1870

W
Wu Yi 已提交
1871
    def _block_attr(self, name):
G
gongweibao 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1882
        id = self._block_attr_id(name)
G
gongweibao 已提交
1883 1884 1885
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1886
    def _blocks_attr(self, name):
G
gongweibao 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1897
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1898 1899 1900 1901 1902
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1903
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1914
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1915

J
JiayiFeng 已提交
1916
    def all_attrs(self):
F
fengjiayi 已提交
1917
        """
1918 1919 1920
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1921
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1922 1923 1924 1925
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1926 1927
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1928
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1929 1930 1931
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1932
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1933 1934 1935 1936
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1937 1938
        return attr_map

Y
Yu Yang 已提交
1939

Y
Yu Yang 已提交
1940
class Block(object):
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1955
        use `Program._create_block()` to create a block.
1956 1957 1958 1959

    Examples:
        .. code-block:: python

1960 1961 1962
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1963 1964 1965 1966 1967 1968 1969 1970 1971
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1972
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1973
        self.desc = program.desc.block(idx)
1974
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1975
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1976
        self.program = program
1977
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1978

1979
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1980 1981
        return self.to_string(True)

F
fengjiayi 已提交
1982 1983
    def to_string(self, throw_on_error, with_details=False):
        """
1984 1985
        Get debug string.

F
fengjiayi 已提交
1986 1987
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1988
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1989
            with_details(bool): more details about variables and parameters
1990 1991
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1992

1993 1994
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1995 1996 1997 1998
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1999
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2000 2001
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2002
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2003
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2004
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2005
            for op in self.ops:
F
fengjiayi 已提交
2006 2007
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2008 2009 2010
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2011 2012
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2013 2014
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2015 2016 2017

    __repr__ = __str__

Y
Yu Yang 已提交
2018 2019
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2020
        return self.desc.parent
Y
Yu Yang 已提交
2021

Y
Yu Yang 已提交
2022 2023 2024 2025
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2026
    def _set_forward_block_idx(self, idx):
2027 2028 2029 2030 2031 2032 2033 2034 2035
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2036
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2037

Y
Yu Yang 已提交
2038 2039
    @property
    def idx(self):
Y
Yu Yang 已提交
2040
        return self.desc.id
Y
Yu Yang 已提交
2041

Q
Qiao Longfei 已提交
2042
    def var(self, name):
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2056
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2057 2058 2059
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2060 2061
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2062
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2063
        return v
Q
Qiao Longfei 已提交
2064

X
Xin Pan 已提交
2065
    def _find_var_recursive(self, name):
2066 2067 2068 2069 2070 2071 2072
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2073
            Variable: the Variable with the giving name. Or None if not found.
2074
        """
Y
Yu Yang 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2099
        return None
Y
Yu Yang 已提交
2100

X
Xin Pan 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2120

Q
Qiao Longfei 已提交
2121
    def all_parameters(self):
2122
        return list(self.iter_parameters())
2123

2124
    def iter_parameters(self):
M
minqiyang 已提交
2125
        return (item[1] for item in six.iteritems(self.vars)
2126
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2127

Y
Yu Yang 已提交
2128
    def create_var(self, *args, **kwargs):
2129
        var = Variable(block=self, *args, **kwargs)
2130 2131
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2132
        return var
Y
Yu Yang 已提交
2133

Q
Qiao Longfei 已提交
2134 2135 2136
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2137
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2138 2139
        """
        Rename variable in vars and ops' inputs and outputs
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2152
        """
M
minqiyang 已提交
2153 2154
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2155

T
typhoonzero 已提交
2156
        if not self.has_var(name):
2157
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2158 2159
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2160
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2161 2162 2163 2164 2165 2166 2167
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2168
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2169 2170 2171 2172
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2173
        orig_var_type = v.type
M
minqiyang 已提交
2174
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2175
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2176
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2177
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
2178 2179 2180 2181
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
2182
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2183 2184 2185 2186 2187 2188 2189
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
2190
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2191 2192
            var = Variable(
                self,
T
typhoonzero 已提交
2193
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2194 2195 2196 2197
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2198
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2199 2200 2201
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2202
        self._sync_with_cpp()
2203
        return var
T
typhoonzero 已提交
2204

W
Wu Yi 已提交
2205 2206
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2207
        self.desc._remove_var(cpt.to_bytes(name))
2208 2209
        del self.vars[name]

Y
Yu Yang 已提交
2210 2211
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
2212
        param = Parameter(global_block, *args, **kwargs)
2213
        if 'initializer' in kwargs:
2214 2215 2216 2217 2218

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2219 2220 2221 2222 2223
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2239
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2240
        return param
Y
Yu Yang 已提交
2241

Y
Yu Yang 已提交
2242
    def append_op(self, *args, **kwargs):
2243 2244 2245 2246 2247 2248
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2249
        if in_dygraph_mode():
2250 2251 2252
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2253 2254 2255 2256 2257
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2258

J
Jiabin Yang 已提交
2259 2260
            type = kwargs.get("type", None)

2261 2262 2263
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2264
                type=type,
M
minqiyang 已提交
2265 2266
                inputs=None,
                outputs=None,
2267
                attrs=attrs)
2268

M
minqiyang 已提交
2269 2270 2271
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2272
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2273 2274

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2275
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2276 2277
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2278
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2279
        else:
2280 2281 2282 2283 2284 2285 2286 2287 2288
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2289
            self.ops.append(op)
M
minqiyang 已提交
2290

2291 2292
        return op

W
Wu Yi 已提交
2293
    def _insert_op(self, index, *args, **kwargs):
2294 2295 2296 2297 2298 2299 2300 2301 2302
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2303 2304
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2305 2306 2307 2308
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2309
    def _remove_op(self, index):
2310 2311 2312 2313 2314 2315 2316 2317 2318
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2319 2320
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2321 2322
        del self.ops[index]

W
Wu Yi 已提交
2323
    def _slice_ops(self, start, end):
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2334
        return self.ops[start:end]
Y
Yancey1989 已提交
2335

W
Wu Yi 已提交
2336
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2337
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2338 2339
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2340
            op = Operator(
J
Jiabin Yang 已提交
2341
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2342

J
Jiabin Yang 已提交
2343
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2344
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2345 2346
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2347
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2348
        else:
2349 2350 2351 2352 2353 2354 2355 2356
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2357
            self.ops.insert(0, op)
2358

Y
Yu Yang 已提交
2359 2360
        return op

W
Wu Yi 已提交
2361
    def _sync_with_cpp(self):
2362
        """
2363 2364
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2365
        """
Q
Qiao Longfei 已提交
2366 2367 2368 2369 2370
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2371
        # sync variables removed from c++ end
2372
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2373
            if not self.desc.find_var(cpt.to_bytes(var)):
2374 2375
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2376
        # sync operators from cpp
2377 2378 2379 2380
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2397 2398 2399 2400 2401

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2402
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2403 2404 2405 2406 2407 2408 2409

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2423 2424 2425 2426
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2427
    def _copy_param_info_from(self, other):
2428
        """
2429 2430
        Copy the information of parameters from the other block.

2431
        Args:
2432 2433 2434 2435 2436
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2437 2438 2439 2440 2441

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2442 2443
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2444
        for p in other.iter_parameters():
2445 2446 2447
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2448
                raise ValueError("_copy_param_info_from should be invoked with "
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2461
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2462
                error_clip=p.error_clip,
2463 2464 2465
                name=v.name)
            self.vars[new_p.name] = new_p

2466
    def _clone_variable(self, var, force_persistable=True):
2467 2468
        """
        Clone a variable into current block.
2469

2470 2471
        Args:
            var: the variable to be cloned.
2472 2473 2474
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2475 2476

        Returns:
2477
            Variable: the new  variable cloned from 'var' in current block.
2478 2479
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2480 2481 2482 2483 2484
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2485 2486
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2487
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2488 2489 2490 2491 2492 2493
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2494
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2495 2496
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2497 2498 2499 2500 2501 2502 2503
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2504
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2505 2506
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2507
        return ret_var
2508

Y
Yu Yang 已提交
2509

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2605
    def remove_input_by_id(self, node_id):
2606 2607 2608 2609 2610 2611
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2612
        self.node.remove_input(node_id)
2613

2614
    def remove_input(self, node):
2615 2616 2617 2618
        """
        Remove a node from inputs.

        Args:
2619
            node(IrNode): the node being removed.
2620
        """
2621
        self.node.remove_input(node.node)
2622

2623
    def append_input(self, node):
2624 2625 2626 2627
        """
        Append a node in inputs.

        Args:
2628
            node(IrNode): the node being appended.
2629
        """
2630
        self.node.append_input(node.node)
2631 2632 2633 2634 2635 2636 2637 2638

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2639
    def remove_output_by_id(self, node_id):
2640 2641 2642 2643 2644 2645
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2646
        self.node.remove_output(node_id)
2647

2648
    def remove_output(self, node):
2649 2650 2651 2652
        """
        Remove a node from outputs.

        Args:
2653
            node(IrNode): the node being removed.
2654
        """
2655
        self.node.remove_output(node.node)
2656

2657
    def append_output(self, node):
2658 2659 2660 2661
        """
        Append a node in outputs.

        Args:
2662
            node(IrNode): the node being appended.
2663
        """
2664
        self.node.append_output(node.node)
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
2882
                all(isinstance(v, Block) for v in val):
2883 2884
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
2885
                isinstance(val, core.ProgramDesc):
2886 2887 2888 2889
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2933 2934
class IrGraph(object):
    """
2935
    Python IrGraph. Beneath it is a core.Graph, which is used for
2936
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2937 2938
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2939 2940 2941 2942
    """

    def __init__(self, graph, for_test=False):
        """
2943 2944
        Construct an IrGraph using core.Graph.

2945 2946 2947 2948 2949 2950 2951 2952 2953
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2954 2955 2956 2957
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2958 2959 2960
        Warns:
            The method only clones the graph structure, not its attributes.

2961 2962 2963
        Returns:
            IrGraph: A new and duplicated graph.
        """
2964
        g = self.graph.clone()
2965 2966
        return IrGraph(g, self._for_test)

2967
    def is_test(self):
2968 2969 2970
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2971 2972
        return self._for_test

W
WangZhen 已提交
2973
    def all_nodes(self):
2974 2975 2976
        """
        Return all nodes included in the graph as a set.
        """
2977
        return {IrNode(node) for node in self.graph.nodes()}
2978

2979
    def all_var_nodes(self):
2980 2981 2982
        """
        Return all variable nodes included in the graph as a set.
        """
2983
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2984

2985
    def all_persistable_nodes(self):
2986 2987 2988
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2989 2990 2991 2992 2993
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2994
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2995

2996
    def all_op_nodes(self):
2997 2998 2999
        """
        Return all operator nodes included in the graph as a set.
        """
3000
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3001

3002
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3014
            IrVarNode: the created persistable variable node.
3015
        """
3016 3017 3018 3019 3020
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3021
        return IrVarNode(self.graph.create_var_node(var_desc))
3022 3023

    def create_var_node(self, name, var_type, shape, var_dtype):
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3035
            IrVarNode: the created variable node.
3036 3037
        """

3038 3039 3040 3041
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3042
        return IrVarNode(self.graph.create_var_node(var_desc))
3043 3044

    def create_var_node_from_desc(self, var_desc):
3045 3046 3047 3048 3049 3050 3051 3052
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3053
            IrVarNode: the created variable node.
3054
        """
3055
        return IrVarNode(self.graph.create_var_node(var_desc))
3056 3057

    def create_op_node(self, op_type, attrs, inputs, outputs):
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
3068
            IrOpNode: the created operator node.
3069
        """
3070 3071
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3072
        for attr, value in six.iteritems(attrs):
3073
            self._update_desc_attr(op_desc, attr, value)
3074
        for input_name, var_nodes in six.iteritems(inputs):
3075 3076 3077 3078
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3079
        for output_name, var_nodes in six.iteritems(outputs):
3080 3081 3082 3083
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3084
        return IrOpNode(self.graph.create_op_node(op_desc))
3085 3086

    def create_op_node_from_desc(self, op_desc):
3087 3088 3089 3090 3091 3092 3093
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3094
            IrOpNode: the created operator node.
3095
        """
3096
        return IrOpNode(self.graph.create_op_node(op_desc))
3097 3098

    def update_input_link(self, old_input_node, new_input_node, op_node):
3099 3100 3101 3102
        """
        Update the input's link of a operator node.

        Args:
3103 3104 3105
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3106
        """
3107
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3108 3109
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3110 3111 3112 3113
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3114
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3115

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3134
    def link_to(self, node_in, node_out):
3135 3136 3137 3138
        """
        Connect two nodes.

        Args:
3139 3140
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3141
        """
3142
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3143
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3144 3145
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3146 3147

    def safe_remove_nodes(self, remove_nodes):
3148 3149 3150 3151 3152 3153 3154
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3155
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3156 3157 3158 3159
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3160 3161
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3162

Z
Zhen Wang 已提交
3163 3164 3165 3166 3167 3168 3169 3170
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3171
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3172 3173 3174 3175
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3176
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3177 3178 3179
                        ]
                    else:
                        var_nodes[each_var_name].append(
3180 3181
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3182 3183
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3184
    def has_circle(self):
3185 3186 3187 3188 3189 3190
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3191 3192 3193
        return core.has_circle(self.graph)

    def graph_num(self):
3194 3195 3196 3197 3198 3199
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3200 3201 3202
        return core.graph_num(self.graph)

    def topology_sort(self):
3203 3204 3205 3206 3207 3208
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3209
            list(IrNode): nodes in topology order.
3210
        """
3211
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3212
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3213 3214

    def build_adjacency_list(self):
3215 3216 3217 3218
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3219
            dict{IrNode: set(IrNode)}: the adjacency list.
3220
        """
3221 3222 3223 3224 3225
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3226

3227 3228 3229 3230 3231 3232 3233 3234
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3235
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3236 3237 3238 3239 3240
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3241 3242 3243
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3244
                                          + ' -o ' + pdf_save_path, shell=True)
3245 3246 3247 3248 3249
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3250
        remove_ctr_vars = set()
3251
        if remove_ctr_var:
3252
            for node in self.all_var_nodes():
3253 3254 3255
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3256 3257
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3258 3259
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3260 3261 3262 3263 3264 3265
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3266 3267 3268 3269
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3270 3271
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3272 3273 3274 3275 3276 3277 3278
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3279 3280 3281
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3282
        WARN: When the graph includes backward operator nodes, the
3283 3284 3285 3286 3287 3288
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3289
        convert_pass = core.get_pass('graph_to_program_pass')
3290 3291
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3292 3293 3294 3295
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3323
class Program(object):
D
dzhwinter 已提交
3324
    """
3325 3326
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3327
    it will contain nested block.
3328

3329 3330 3331
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3332

J
Jiabin Yang 已提交
3333
    A set of Program usually contains startup program and main program.
3334
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3335 3336 3337 3338 3339 3340 3341
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

3342 3343 3344 3345
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3346 3347

    Returns:
3348
        Program: An empty Program.
D
dzhwinter 已提交
3349 3350

    Examples:
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3364 3365 3366

    """

3367 3368
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3369 3370
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3371
        self._seed = 0
Y
yuyang18 已提交
3372
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3373
        self.__op_role_var = []
T
tangwei12 已提交
3374

3375 3376
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3377
        self._is_distributed = False
3378
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3379
        self._is_chief = False
3380 3381 3382
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3383
        self._endpoints = []
3384 3385 3386
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3387
        self._trainers_endpoints = []
3388
        # the distributed lookup table names
T
tangwei12 已提交
3389
        self._distributed_lookup_table = None
3390 3391 3392

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3393 3394
        self._use_lamb = False

3395 3396 3397
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3398

3399 3400 3401
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3402
        self._program_config = None
3403

H
hutuxian 已提交
3404 3405 3406
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3407 3408 3409
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3410
    @property
3411
    def _op_role(self):
Y
yuyang18 已提交
3412 3413 3414 3415 3416 3417 3418 3419
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3420
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3421 3422 3423 3424
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3425 3426
        return self._current_role

3427 3428
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3429 3430 3431
        self._current_role = role

    @property
3432
    def _op_role_var(self):
Y
yuyang18 已提交
3433
        """
3434
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3435

3436
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3437 3438 3439

        Notes: This is a very low-level API. Users should not use it directly.
        """
3440
        return self.__op_role_var
Y
yuyang18 已提交
3441

3442 3443 3444 3445 3446 3447 3448 3449 3450
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3451
    @signature_safe_contextmanager
W
Wu Yi 已提交
3452
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3453 3454 3455 3456 3457 3458 3459
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3460
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3461 3462 3463

        Examples:

3464
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3465
            >>> p, g = backward(...)
W
Wu Yi 已提交
3466
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3467 3468
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3469
        tmp_role = self._current_role
3470
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3471

Y
yuyang18 已提交
3472 3473
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3474
        self.__op_role_var = [
3475 3476 3477
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3478
        yield
3479
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3480
        self._current_role = tmp_role
Y
Yu Yang 已提交
3481

S
rename  
sneaxiy 已提交
3482
    @signature_safe_contextmanager
X
Xin Pan 已提交
3483
    def _lr_schedule_guard(self, is_with_opt=False):
3484 3485 3486 3487 3488 3489 3490
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3491 3492 3493 3494
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3495 3496 3497

        Examples:

3498
            >>> import paddle.fluid as fluid
3499 3500 3501 3502
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3503 3504

        tmp_role = self._current_role
3505
        tmp_var = self.__op_role_var
3506

3507 3508
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3509 3510
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3511
        # TODO(typhoonzero): how to set target learning rate var
3512
        self.__op_role_var = []
3513
        yield
3514
        self.__op_role_var = tmp_var
3515
        self._current_role = tmp_role
3516

3517
    def __str__(self):
Y
yuyang18 已提交
3518 3519 3520 3521 3522 3523 3524 3525 3526
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3527 3528
        return self.to_string(True)

F
fengjiayi 已提交
3529 3530 3531
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3532

3533 3534 3535
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3536

3537
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3538

H
haowang101779990 已提交
3539
        Returns:
3540
            str: The debug string describe current Program.
Y
yuyang18 已提交
3541 3542

        Raises:
3543
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3544

3545 3546 3547 3548 3549 3550 3551
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
3552 3553 3554
                print("program string without detial: {}".format(prog_string))
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
                print("program string with detial: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3564 3565
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3566 3567
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3568

W
Wu Yi 已提交
3569
    def _get_desc(self):
Y
yuyang18 已提交
3570 3571 3572 3573 3574 3575 3576
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3577 3578
        return self.desc

X
version  
Xin Pan 已提交
3579 3580 3581
    def _version(self):
        return self.desc._version()

3582
    @dygraph_not_support
3583
    def clone(self, for_test=False):
Y
yuyang18 已提交
3584
        """
3585
        **Notes**:
3586 3587 3588 3589
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3590
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3591

3592 3593
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3594

3595

3596
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3597 3598 3599
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3600

Y
yuyang18 已提交
3601
        * Set for_test to False when we want to clone the program for training.
3602
        * Set for_test to True when we want to clone the program for testing.
3603 3604
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
3605
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3606

3607 3608
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3609

3610 3611 3612 3613
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3614

3615
        Args:
3616

3617
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3618

3619 3620
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3621

Y
yuyang18 已提交
3622 3623 3624

        Examples:

3625
        **Notes: The Program's order maybe different after** :code:`clone` **and
3626
        this will not affect your training or testing progress. In the following
3627
        example we give you an simple method** :code:`print_prog(program)` **to
3628
        print Program Descs inorder to make sure you have same print result
3629
        after** :code:`clone`:
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3667 3668 3669

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3737 3738
        """
        if for_test:
3739
            if self._appending_grad_times > 0:
3740 3741 3742 3743 3744 3745 3746
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3747 3748 3749
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3750
        else:
3751
            p = Program()
G
gongweibao 已提交
3752 3753
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3754
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3755 3756 3757
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3758 3759

            p._current_role = self._current_role
3760
            p.__op_role_var = self.__op_role_var
3761
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3762

W
Wu Yi 已提交
3763
            p._sync_with_cpp()
3764

W
Wu Yi 已提交
3765
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3766
        p._copy_data_info_from(self)
3767
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3768
        return p
3769

3770
    def _prune(self, targets):
Y
yuyang18 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
3784 3785 3786 3787
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
3788

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
3823
        """
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

3841 3842
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3843 3844
        if not isinstance(targets, list):
            targets = [targets]
3845 3846 3847 3848 3849 3850

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3851 3852 3853 3854
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3855 3856
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3857
                    # and we need to find the current op that generate this
3858 3859 3860 3861 3862 3863 3864 3865
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3866
                    t = t.op
3867 3868 3869 3870
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3871
                else:
3872 3873
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3874 3875 3876

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
3877
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
3878 3879 3880
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3881
        res._sync_with_cpp()
3882 3883
        return res

X
Xin Pan 已提交
3884
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3885
        """
F
fengjiayi 已提交
3886 3887 3888 3889 3890
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3891
        3. change the :code:`is_test`
Y
yuyang18 已提交
3892 3893 3894
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3895
        Args:
X
Xin Pan 已提交
3896 3897
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3898

Y
yuyang18 已提交
3899 3900 3901 3902 3903 3904
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3905
        res = Program()
3906
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3907 3908 3909 3910

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3911
        if prune_read_op:
3912 3913 3914 3915 3916 3917 3918 3919 3920
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3921
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3922 3923

        # change all `is_test` attributes to True
M
minqiyang 已提交
3924
        for i in six.moves.range(res.desc.num_blocks()):
3925
            block = res.desc.block(i)
M
minqiyang 已提交
3926
            for j in six.moves.range(block.op_size()):
3927 3928
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3929
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3930 3931 3932
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3933
        res._sync_with_cpp()
3934 3935
        return res

3936 3937
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3938
        """
3939 3940 3941 3942
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3943

3944 3945
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
3946

3947
        Args:
Y
yuyang18 已提交
3948

3949
            binary_str_type (str): the binary prootbuf string.
3950

3951 3952
        Returns:
            Program: A deserialized Program.
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
3975
        """
3976 3977
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3978
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3979
        p._sync_with_cpp()
3980
        return p
Y
Yu Yang 已提交
3981

3982
    @staticmethod
3983
    def _construct_from_desc(desc):
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3999 4000
    @property
    def random_seed(self):
Y
yuyang18 已提交
4001
        """
4002
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4003 4004
        the random seed from random device.

4005 4006 4007 4008
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4009

4010 4011 4012 4013 4014 4015 4016 4017

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4018 4019 4020
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4021 4022
                print(random_seed)
                prog.random_seed = 1
4023 4024
                z_var = fluid.layers.dropout(x_var, 0.7)

4025
                print(prog.random_seed)
Y
yuyang18 已提交
4026
        """
D
dzhwinter 已提交
4027 4028
        return self._seed

Q
qiaolongfei 已提交
4029 4030
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4031
        """
4032 4033
        The number of :ref:`api_guide_Block_en`  in this Program.

4034 4035 4036 4037
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4038

4039 4040 4041 4042 4043 4044 4045 4046 4047

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4048 4049


Y
yuyang18 已提交
4050
        """
Q
qiaolongfei 已提交
4051 4052
        return self.desc.num_blocks()

D
dzhwinter 已提交
4053 4054 4055 4056 4057 4058
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4059
    def __repr__(self):
4060
        return self.__str__()
4061

Y
Yu Yang 已提交
4062
    def global_block(self):
Y
yuyang18 已提交
4063
        """
4064 4065
        **Notes**:
            **This API has no effect in Dygraph mode**
4066 4067 4068

        Get the first :ref:`api_guide_Block_en` of this Program.

4069 4070
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4071

4072 4073 4074 4075 4076 4077 4078 4079 4080

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4081

Y
yuyang18 已提交
4082
        """
Y
Yu Yang 已提交
4083 4084
        return self.blocks[0]

Q
Qiao Longfei 已提交
4085
    def block(self, index):
Y
yuyang18 已提交
4086
        """
4087 4088
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4089

4090 4091
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

4092 4093
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4094

4095 4096
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4097 4098 4099 4100 4101 4102 4103 4104 4105

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4106
        """
Q
Qiao Longfei 已提交
4107 4108
        return self.blocks[index]

Y
Yu Yang 已提交
4109
    def current_block(self):
Y
yuyang18 已提交
4110
        """
4111 4112
        **Notes**:
            **This API has no effect in Dygraph mode**
4113

4114 4115
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4116

4117 4118
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4119

4120 4121 4122 4123 4124 4125 4126 4127
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4128
        """
Y
Yu Yang 已提交
4129 4130
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4131
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4132 4133 4134 4135 4136
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
4137

Y
yuyang18 已提交
4138 4139 4140 4141 4142
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4143
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4144 4145 4146
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4147 4148 4149 4150
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4151
    def _rollback(self):
Y
yuyang18 已提交
4152 4153 4154 4155 4156
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4157 4158
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4159
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4170 4171 4172
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4173
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4174

W
Wu Yi 已提交
4175
    def _copy_param_info_from(self, other):
4176
        """
4177
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4178

Y
yuyang18 已提交
4179 4180 4181
        Notes: This is a very low level API. Users should not invoke it
        directly.

4182 4183 4184 4185 4186 4187 4188
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4189
            raise TypeError("_copy_param_info_from should be invoked with "
4190 4191 4192
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4193
            raise ValueError("_copy_param_info_from should be invoked with two "
4194
                             "program, with represent the same topology")
W
Wu Yi 已提交
4195
        self.global_block()._copy_param_info_from(other.global_block())
4196

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4212
        self._parameters_on_pservers = other._parameters_on_pservers
4213
        self._endpoints = other._endpoints
4214
        self._ps_endpoint = other._ps_endpoint
4215 4216
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4217
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4218 4219
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4220

Y
yuyang18 已提交
4221 4222 4223
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4224 4225 4226 4227 4228 4229 4230
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4231
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4232 4233 4234
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4235
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4236
                             "program, with represent the same topology")
4237
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4238 4239
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4240 4241
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4242

4243
    @dygraph_not_support
4244
    def list_vars(self):
Y
yuyang18 已提交
4245
        """
4246
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4247

4248 4249
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4261
        """
4262
        for each_block in self.blocks:
4263
            for each_var in list(each_block.vars.values()):
4264 4265
                yield each_var

Y
Yu Yang 已提交
4266

Y
Yu Yang 已提交
4267
class Parameter(Variable):
4268
    """
4269
    Parameter is derived from Variable. A parameter is a persistable
4270
    Variable, and will be updated by optimizers after each iteration.
4271
    The training of a neural network is essentially the updating of
4272 4273
    its parameters.

4274
    Relative to a general Variable, a Parameter has several its own
4275 4276
    member variables:

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4289 4290
    """

Y
Yu Yang 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
4301 4302 4303

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4304 4305 4306 4307
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4308 4309
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4310
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4311

W
wanghaoshuang 已提交
4312
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4313

4314 4315
        self.is_distributed = False

F
fengjiayi 已提交
4316 4317 4318
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4319 4320 4321
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4322

F
update  
fengjiayi 已提交
4323 4324 4325 4326 4327 4328 4329 4330
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4331 4332 4333 4334 4335 4336 4337 4338 4339
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4340 4341 4342 4343 4344 4345
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4346
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4347
            for attr_name in additional_attr:
4348 4349
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4350 4351
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4352 4353 4354 4355
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4356

Y
Yu Yang 已提交
4357
# program is a global instance.
Y
Yu Yang 已提交
4358 4359
_main_program_ = Program()
_startup_program_ = Program()
4360

4361

4362
def default_startup_program():
Y
Yu Yang 已提交
4363
    """
Y
yuyang18 已提交
4364 4365
    Get default/global startup program.

4366 4367 4368
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4369 4370 4371
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
4372
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4373

4374
    Returns: current default startup :ref:`api_fluid_Program`
4375

4376
    Returns type: :ref:`api_fluid_Program`
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4392
    """
Y
Yu Yang 已提交
4393
    return _startup_program_
4394

4395

4396
def default_main_program():
Y
Yu Yang 已提交
4397
    """
Y
yuyang18 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
4407

Y
Yu Yang 已提交
4408 4409
    Returns:
        Program: main program
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4438 4439
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
4440
    """
Y
Yu Yang 已提交
4441
    return _main_program_
Y
Yu Yang 已提交
4442 4443 4444 4445 4446


def switch_main_program(program):
    """
    Switch the main program to a new program.
4447

Y
Yu Yang 已提交
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4462
    Switch the startup program to a new program
Y
Yu Yang 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4475
@signature_safe_contextmanager
Y
Yu Yang 已提交
4476 4477
def program_guard(main_program, startup_program=None):
    """
4478 4479
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4480
    variables to the new main programs.
4481

Y
Yu Yang 已提交
4482
    Examples:
4483 4484 4485
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4486

4487 4488 4489 4490 4491
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4492 4493 4494

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4495

Y
Yu Yang 已提交
4496
    Examples:
4497
       .. code-block:: python
Y
yuyang18 已提交
4498

4499 4500 4501 4502 4503 4504
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
4505

Y
Yu Yang 已提交
4506
    Args:
4507 4508 4509
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4522 4523


W
Wu Yi 已提交
4524
def _get_var(name, program=None):
X
xuwei06 已提交
4525
    """
Y
yuyang18 已提交
4526
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4527

X
xuwei06 已提交
4528 4529 4530
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4531
        If None, default_global_program() will be used.
X
xuwei06 已提交
4532 4533 4534 4535 4536 4537 4538

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4539
    assert isinstance(program, Program)
X
xuwei06 已提交
4540 4541

    return program.global_block().var(name)
4542 4543


S
rename  
sneaxiy 已提交
4544
@signature_safe_contextmanager
L
lujun 已提交
4545 4546 4547 4548
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
4549

4550
    yield
P
Paddle CI 已提交
4551

L
lujun 已提交
4552
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4553 4554


S
rename  
sneaxiy 已提交
4555
@signature_safe_contextmanager
L
lujun 已提交
4556 4557 4558 4559
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4560

4561
    yield
M
minqiyang 已提交
4562

L
lujun 已提交
4563
    _dygraph_current_expected_place_ = tmp_place
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()