NormProjectionLayer.cpp 4.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "NormProjectionLayer.h"
Z
zhangjinchao01 已提交
16 17 18 19 20 21 22 23 24 25
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {
size_t CMRProjectionNormLayer::getSize() {
  CHECK_EQ(inputLayers_.size(), 1UL);
  size_t layerSize = 0;
  imgSizeH_ = inputLayers_[0]->getOutput().getFrameHeight();
  imgSizeW_ = inputLayers_[0]->getOutput().getFrameWidth();
  if (imgSizeH_ == 0) {
L
Luo Tao 已提交
26
    imgSizeH_ = imgSizeY_;
Z
zhangjinchao01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
  }
  if (imgSizeW_ == 0) {
    imgSizeW_ = imgSize_;
  }
  outputH_ = imgSizeH_;
  outputW_ = imgSizeW_;
  layerSize = outputH_ * outputW_ * channels_;

  getOutput().setFrameHeight(outputH_);
  getOutput().setFrameWidth(outputW_);
  return layerSize;
}

bool CMRProjectionNormLayer::init(const LayerMap& layerMap,
                                  const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  ResponseNormLayer::init(layerMap, parameterMap);

  /* the size of inputs for norm-layer is 1 */
  CHECK_EQ(config_.inputs_size(), 1);

H
hedaoyuan 已提交
48
  if (useGpu_) {
H
hedaoyuan 已提交
49
    forward_ = FunctionBase::funcRegistrar_.createByType(
H
hedaoyuan 已提交
50 51
        FUNC_NAME(CrossMapNormal, GPU));
  } else {
H
hedaoyuan 已提交
52
    forward_ = FunctionBase::funcRegistrar_.createByType(
H
hedaoyuan 已提交
53 54
        FUNC_NAME(CrossMapNormal, CPU));
  }
H
hedaoyuan 已提交
55 56 57 58 59 60 61 62 63 64 65
  forward_->init(
      FuncConfig().set("size", size_).set("scale", scale_).set("pow", pow_));

  if (useGpu_) {
    backward_ = FunctionBase::funcRegistrar_.createByType(
        FUNC_NAME(CrossMapNormalGrad, GPU));
  } else {
    backward_ = FunctionBase::funcRegistrar_.createByType(
        FUNC_NAME(CrossMapNormalGrad, CPU));
  }
  backward_->init(
H
hedaoyuan 已提交
66 67
      FuncConfig().set("size", size_).set("scale", scale_).set("pow", pow_));

Z
zhangjinchao01 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  return true;
}

void CMRProjectionNormLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  /* note: one sample correspond to one row */
  MatrixPtr input = inputLayers_[0]->getOutputValue();
  int batchSize = input->getHeight();
  int size = getSize();
  resetOutput(batchSize, size);

  MatrixPtr outV = getOutputValue();

  Matrix::resizeOrCreate(denoms_, batchSize, size, /* trans */ false, useGpu_);

H
hedaoyuan 已提交
85 86 87 88 89 90 91
  dims_ = {(size_t)batchSize,
           (size_t)channels_,
           (size_t)imgSizeH_,
           (size_t)imgSizeW_};
  forward_->calc(
      {Tensor(input->getData(), dims_)},
      {Tensor(outV->getData(), dims_), Tensor(denoms_->getData(), dims_)},
H
hedaoyuan 已提交
92
      {});
Z
zhangjinchao01 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106
}

void CMRProjectionNormLayer::backward(const UpdateCallback& callback) {
  (void)callback;

  if (NULL == inputLayers_[0]->getOutputGrad()) {
    return;
  }
  /* Do derivation */
  MatrixPtr preOutGrad = inputLayers_[0]->getOutputGrad();
  MatrixPtr localGrad = getOutputGrad();
  MatrixPtr localOutV = getOutputValue();
  MatrixPtr preOutV = inputLayers_[0]->getOutputValue();

H
hedaoyuan 已提交
107 108 109 110 111 112 113
  backward_->calc({Tensor(preOutV->getData(), dims_),
                   Tensor(localOutV->getData(), dims_),
                   Tensor(localGrad->getData(), dims_),
                   Tensor(denoms_->getData(), dims_)},
                  {Tensor(preOutGrad->getData(), dims_)},
                  {});
#if 0
H
hedaoyuan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  if (useGpu_) {
    CrossMapNormalGrad<DEVICE_TYPE_GPU> crossGrad;
    crossGrad(dynamic_cast<GpuMatrix&>(*preOutGrad),
              dynamic_cast<GpuMatrix&>(*preOutV),
              dynamic_cast<GpuMatrix&>(*localGrad),
              dynamic_cast<GpuMatrix&>(*localOutV),
              dynamic_cast<GpuMatrix&>(*denoms_),
              channels_,
              imgSizeH_,
              imgSizeW_,
              size_,
              scale_,
              pow_);
  } else {
    CrossMapNormalGrad<DEVICE_TYPE_CPU> crossGrad;
    crossGrad(dynamic_cast<CpuMatrix&>(*preOutGrad),
              dynamic_cast<CpuMatrix&>(*preOutV),
              dynamic_cast<CpuMatrix&>(*localGrad),
              dynamic_cast<CpuMatrix&>(*localOutV),
              dynamic_cast<CpuMatrix&>(*denoms_),
              channels_,
              imgSizeH_,
              imgSizeW_,
              size_,
              scale_,
              pow_);
  }
H
hedaoyuan 已提交
141
#endif
Z
zhangjinchao01 已提交
142 143
}
}  // namespace paddle