“2a6760be8eb431fada70c4193aba28f2dae81502”上不存在“pages/git@gitcode.net:dcloud/hello-uni-app-x.git”
test_chunk_op.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import numpy as np
from paddle.fluid import Program, program_guard
from paddle import fluid
import paddle


class TestChunkOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of axis in chunk_op should be int or Variable.
            def test_axis_type():
                x1 = paddle.data(shape=[4], dtype='float16', name='x3')
                paddle.chunk(x=x1, chunks=2, axis=3.2)

            self.assertRaises(TypeError, test_axis_type)

            # The type of axis in chunk op should be int or Variable.
            def test_axis_variable_type():
                x2 = paddle.data(shape=[4], dtype='float16', name='x9')
                x3 = paddle.data(shape=[1], dtype='float16', name='x10')
                paddle.chunk(input=x2, chunks=2, axis=x3)

            self.assertRaises(TypeError, test_axis_variable_type)

            # The type of num_or_sections in chunk_op should be int, tuple or list.
            def test_chunks_type():
                x4 = paddle.data(shape=[4], dtype='float16', name='x4')
                paddle.chunk(input=x4, chunks=2.1, axis=3)

            self.assertRaises(TypeError, test_chunks_type)

            def test_axis_type_tensor():
                x5 = paddle.data(shape=[4], dtype='float16', name='x6')
                paddle.chunk(input=x5, chunks=2, axis=3.2)

            self.assertRaises(TypeError, test_axis_type_tensor)


class API_TestChunk(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = paddle.data('data1', shape=[4, 6, 6], dtype='float64')
            data2 = paddle.data('data2', shape=[1], dtype='int32')
            x0, x1, x2 = paddle.chunk(data1, chunks=3, axis=data2)
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            input2 = np.array([2]).astype('int32')
            r0, r1, r2, = exe.run(feed={"data1": input1,
                                        "data2": input2},
                                  fetch_list=[x0, x1, x2])
            ex_x0, ex_x1, ex_x2 = np.array_split(input1, 3, axis=2)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))
            self.assertTrue(np.allclose(ex_x2, r2))


class API_TestChunk1(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = paddle.data('data1', shape=[4, 6, 6], dtype='float64')
            x0, x1, x2 = paddle.chunk(data1, chunks=3, axis=2)
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            r0, r1, r2, = exe.run(feed={"data1": input1},
                                  fetch_list=[x0, x1, x2])
            ex_x0, ex_x1, ex_x2 = np.array_split(input1, 3, axis=2)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))
            self.assertTrue(np.allclose(ex_x2, r2))


class API_TestDygraphChunk(unittest.TestCase):
    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = fluid.dygraph.to_variable(input_1)
            x0, x1, x2 = paddle.chunk(input, chunks=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.array_split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("bool")
            # input is a variable which shape is [4, 6, 6]
            input = fluid.dygraph.to_variable(input_1)
            x0, x1, x2 = paddle.chunk(input, chunks=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.array_split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

    def test_axis_tensor_input(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = fluid.dygraph.to_variable(input_1)
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
            x0, x1, x2 = paddle.chunk(input, chunks=3, axis=num1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.array_split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))


if __name__ == '__main__':
    unittest.main()