elementwise_broadcast.cu.h 19.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/pten/core/dense_tensor.h"
C
Chen Weihang 已提交
18
#include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise_common.cu.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

namespace pten {

struct DimensionsTransform {
  using DimVector = std::vector<int64_t>;
  typedef void (*MergeFunctor)(
      bool &, std::vector<DimVector> &, DimVector &, int, int);
  int64_t dim_size;
  DimVector out_dims;
  std::vector<DimVector> in_dims;

 private:
  // To compensate the lackage of input_tensors` dimension with input variable
  // 'axis'
  void InputDimensionsExtend(int N, int axis) {
    for (auto &in_dim : in_dims) {
      int64_t in_idx = 0;
      if (in_dim.size() < dim_size) {
        DimVector tmp_dim(dim_size, 1);
        do {
          if (in_dim[in_idx] == out_dims[axis] || in_dim[in_idx] == 1) {
            tmp_dim[axis] = in_dim[in_idx];
            in_idx++;
            axis++;
          } else {
            PADDLE_THROW(paddle::platform::errors::InvalidArgument(
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                axis + 1,
                out_dims[axis],
                in_dim[in_idx]));
          }
        } while (in_idx < in_dim.size());
        in_dim.resize(dim_size);
        std::copy(tmp_dim.begin(), tmp_dim.end(), in_dim.begin());
      } else {
        do {
          if (in_dim[in_idx] == out_dims[in_idx] || in_dim[in_idx] == 1) {
            in_idx++;
          } else {
            PADDLE_THROW(paddle::platform::errors::InvalidArgument(
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                in_idx + 1,
                out_dims[in_idx],
                in_dim[in_idx]));
          }
        } while (in_idx < dim_size);
      }
      std::reverse(in_dim.begin(), in_dim.end());
    }
    std::reverse(out_dims.begin(), out_dims.end());
  }

  template <typename MergeFunctor>
  __inline__ void MergeDimensions(MergeFunctor merge_func, int N) {
    auto VectorReorganise = [](DimVector *vec, int l_idx, int m_idx) {
      (*vec)[m_idx - 1] = std::accumulate(vec->begin() + l_idx,
                                          vec->begin() + m_idx,
                                          1,
                                          std::multiplies<int64_t>());
      vec->erase(vec->begin() + l_idx, vec->begin() + m_idx - 1);
    };

    int64_t i = 0;
    while (i < dim_size) {
      int cnt = 0;
      int low_idx = i;
      bool equal = true;
      do {
        merge_func(equal, in_dims, out_dims, i, N);
        if (equal) {
          i++;
          cnt++;
        } else {
          break;
        }
      } while (i < dim_size);

      if (cnt > 1) {
        for (auto &in_dim : in_dims) {
          VectorReorganise(&in_dim, low_idx, i);
        }
        VectorReorganise(&out_dims, low_idx, i);
        dim_size -= --cnt;
        i -= cnt;
      } else if (cnt < 1) {
        i++;
      }
    }
  }

 public:
  explicit DimensionsTransform(const std::vector<const DenseTensor *> &ins,
                               const paddle::framework::DDim &dims,
                               int axis) {
    const int N = ins.size();
    dim_size = dims.size();
    out_dims = paddle::framework::vectorize<int64_t>(dims);
    in_dims.resize(N);
    for (int j = 0; j < N; ++j) {
      in_dims[j] = paddle::framework::vectorize<int64_t>(ins[j]->dims());
    }
    InputDimensionsExtend(N, axis);

    auto merge_sequential_dims = [](bool &equal,
                                    std::vector<DimVector> &in_dims,
                                    DimVector &out,
                                    int i,
                                    int num) {
      for (int j = 1; j < num; ++j) {
134
        equal &= (in_dims[0][i] == in_dims[j][i]) ? true : false;
135 136 137 138 139 140 141 142 143 144
      }
    };
    auto merge_sequential_one_dims = [](bool &equal,
                                        std::vector<DimVector> &in_dims,
                                        DimVector &out,
                                        int i,
                                        int num) {
      equal = in_dims[0][i] == 1;
      if (equal) {
        for (int j = 1; j < num; ++j) {
145
          equal &= in_dims[j][i] == out[i];
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        }
      }
    };
    // To Merge the dimensions of input_tensors while the consequtive
    // equal-dimensions appears.
    MergeFunctor merge_ptr = merge_sequential_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);

    int min_idx = 0;
    int min_val = std::accumulate(
        in_dims[0].begin(), in_dims[0].end(), 1, std::multiplies<int64_t>());
    for (int j = 1; j < N; ++j) {
      int temp = std::accumulate(
          in_dims[j].begin(), in_dims[j].end(), 1, std::multiplies<int64_t>());
      min_val = min_val > temp ? temp : min_val;
      min_idx = min_val == temp ? j : min_idx;
    }
    std::swap(in_dims[0], in_dims[min_idx]);

    // To Merge the dimension of input_tensors while the consequtive
    // 1-value-dimensions appears.
    merge_ptr = merge_sequential_one_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);
    std::swap(in_dims[min_idx], in_dims[0]);
  }
};

template <typename T, int VecSize, int Rank, bool IsBoundary = false>
__device__ __forceinline__ void LoadData(
    T *dst,
    const T *__restrict__ src,
    uint32_t block_offset,
    const kps::details::BroadcastConfig<Rank> &config,
    int numel,
    int num,
    bool need_broadcast) {
  // numel : whole num of output
  // num: how many data will be deal with in this time
  if (need_broadcast) {
    kps::ReadDataBc<T, VecSize, 1, 1, Rank, IsBoundary>(
        dst, src, block_offset, config, numel);
  } else {
    kps::ReadData<T, VecSize, 1, 1, IsBoundary>(dst, src + block_offset, num);
  }
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
196
          int NumOuts,
197 198 199
          int VecSize,
          int Rank,
          bool IsBoundary = false>
200
__device__ void ElementwiseBroadcastKernelImpl(
201
    const paddle::framework::Array<const InT *__restrict__, Arity> &ins,
202
    paddle::framework::Array<OutT *, NumOuts> outs,
203 204 205 206 207
    const paddle::framework::Array<bool, Arity> &use_broadcast,
    uint32_t numel,
    const paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity>
        &configs,
    int num,
208
    int block_offset,
209 210
    Functor func) {
  InT args[Arity][VecSize];
211
  ConditionalT<OutT, NumOuts> result[VecSize];
212 213 214 215 216 217 218 219 220 221 222 223

#pragma unroll
  for (int i = 0; i < Arity; i++) {
    kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
    LoadData<InT, VecSize, Rank, IsBoundary>(args[i],
                                             ins[i],
                                             block_offset,
                                             configs[i],
                                             numel,
                                             num,
                                             use_broadcast[i]);
  }
224
  constexpr bool kCallElementwiseAny =
225 226
      paddle::platform::FunctionTraits<Functor>::has_pointer_args;
  ElementwisePrimitiveCaller<InT,
227
                             ConditionalT<OutT, NumOuts>,
228 229 230 231
                             VecSize,
                             Functor,
                             Arity,
                             kCallElementwiseAny>()(func, args, result);
232 233 234

  ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
      outs, result, block_offset, num);
235 236 237 238 239 240
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
241
          int NumOuts,
242 243
          int VecSize,
          int Rank>
244
__global__ void ElementwiseBroadcastKernel(
245
    paddle::framework::Array<const InT *__restrict__, Arity> ins,
246
    paddle::framework::Array<OutT *, NumOuts> outs,
247 248 249 250
    paddle::framework::Array<bool, Arity> use_broadcast,
    uint32_t numel,
    paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity>
        configs,
251
    int main_offset,
252 253
    int tail_tid,
    Functor func) {
254 255
  int block_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
  int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
256

257 258 259 260 261 262
#ifdef PADDLE_WITH_XPU2
  for (; block_offset < main_offset; block_offset += stride) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
263
                                   NumOuts,
264 265 266
                                   VecSize,
                                   Rank,
                                   false>(ins,
267
                                          outs,
268 269 270 271 272 273 274 275 276 277 278 279
                                          use_broadcast,
                                          numel,
                                          configs,
                                          BLOCK_NUM_X * VecSize,
                                          block_offset,
                                          func);
  }
  if (block_offset < numel) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
280
                                   NumOuts,
281 282 283
                                   VecSize,
                                   Rank,
                                   true>(
284
        ins, outs, use_broadcast, numel, configs, tail_tid, block_offset, func);
285
  }
286 287 288 289 290 291
#else
  if (block_offset < main_offset) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
292
                                   NumOuts,
293 294 295
                                   VecSize,
                                   Rank,
                                   false>(ins,
296
                                          outs,
297 298 299 300 301 302 303 304 305 306 307
                                          use_broadcast,
                                          numel,
                                          configs,
                                          BLOCK_NUM_X * VecSize,
                                          block_offset,
                                          func);
  } else {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
308
                                   NumOuts,
309 310 311
                                   VecSize,
                                   Rank,
                                   true>(
312
        ins, outs, use_broadcast, numel, configs, tail_tid, block_offset, func);
313 314
  }
#endif
315 316 317 318 319 320
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
321
          int NumOuts,
322 323 324 325
          int VecSize,
          int Rank>
void LaunchKernel(const paddle::platform::CUDADeviceContext &ctx,
                  const std::vector<const DenseTensor *> &ins,
326
                  std::vector<DenseTensor *> *outs,
327 328
                  Functor func,
                  DimensionsTransform merge_dims) {
329
  int numel = (*outs)[0]->numel();
330 331 332
  const int threads = 256;
  int blocks = ((numel + VecSize - 1) / VecSize + threads - 1) / threads;

333
  int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
334 335 336 337 338 339
  int tail_tid = numel % (VecSize * threads);
  auto stream = ctx.stream();

  paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity> configs;
  paddle::framework::Array<bool, Arity> use_broadcast;
  paddle::framework::Array<const InT *__restrict__, Arity> ins_data;
340 341 342 343 344
  paddle::framework::Array<OutT *, NumOuts> outs_data;

  for (int i = 0; i < NumOuts; ++i) {
    outs_data[i] = (*outs)[i]->mutable_data<OutT>();
  }
345 346 347 348 349 350 351 352 353 354 355 356

  for (int i = 0; i < Arity; i++) {
    use_broadcast[i] = (ins[i]->numel() != numel);
    ins_data[i] = ins[i]->data<InT>();
    if (use_broadcast[i]) {
      // get the broadcast config,
      // if data shape is[m, n], then you should set data_dim = {n, m}
      // eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3}
      configs[i] = kps::details::BroadcastConfig<Rank>(
          merge_dims.out_dims, merge_dims.in_dims[i], merge_dims.dim_size);
    }
  }
357

358 359 360 361 362 363 364 365 366
#ifdef PADDLE_WITH_XPU2
  threads = 128;
  blocks = 8;
  main_offset = (numel / (VecSize * threads)) * VecSize * threads;
  tail_tid = numel % (VecSize * threads);
  ElementwiseBroadcastKernel<InT,
                             OutT,
                             Functor,
                             Arity,
367
                             NumOuts,
368 369
                             VecSize,
                             Rank><<<blocks, threads, stream>>>(ins_data,
370
                                                                outs_data,
371 372 373 374 375 376 377 378 379 380 381
                                                                use_broadcast,
                                                                numel,
                                                                configs,
                                                                main_offset,
                                                                tail_tid,
                                                                func);
#else
  ElementwiseBroadcastKernel<InT,
                             OutT,
                             Functor,
                             Arity,
382
                             NumOuts,
383 384 385
                             VecSize,
                             Rank><<<blocks, threads, 0, stream>>>(
      ins_data,
386
      outs_data,
387 388 389 390 391 392 393
      use_broadcast,
      numel,
      configs,
      main_offset,
      tail_tid,
      func);
#endif
394 395
}

396 397 398 399 400 401
template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize>
402 403 404
void LaunchBroadcastKernelForDifferentVecSize(
    const paddle::platform::CUDADeviceContext &ctx,
    const std::vector<const DenseTensor *> &ins,
405
    std::vector<DenseTensor *> *outs,
406 407
    int axis,
    Functor func) {
408
  const auto merge_dims = DimensionsTransform(ins, (*outs)[0]->dims(), axis);
409

410 411 412 413
#define CALL_BROADCAST_FOR_DIM_SIZE(rank)                            \
  case rank: {                                                       \
    LaunchKernel<InT, OutT, Functor, Arity, NumOuts, VecSize, rank>( \
        ctx, ins, outs, func, merge_dims);                           \
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  } break;

  switch (merge_dims.dim_size) {
    CALL_BROADCAST_FOR_DIM_SIZE(1);
    CALL_BROADCAST_FOR_DIM_SIZE(2);
    CALL_BROADCAST_FOR_DIM_SIZE(3);
    CALL_BROADCAST_FOR_DIM_SIZE(4);
    CALL_BROADCAST_FOR_DIM_SIZE(5);
    CALL_BROADCAST_FOR_DIM_SIZE(6);
    CALL_BROADCAST_FOR_DIM_SIZE(7);
    CALL_BROADCAST_FOR_DIM_SIZE(8);
    default: {
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "The maximum dimension of input tensor is expected to be less than "
          "%d, but recieved %d.\n",
          merge_dims.dim_size,
          paddle::framework::DDim::kMaxRank));
    }
  }
#undef CALL_BROADCAST_FOR_DIM_SIZE
}

436 437 438 439 440
template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
void LaunchBroadcastElementwiseCudaKernel(
    const paddle::platform::CUDADeviceContext &ctx,
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    int axis,
    Functor func) {
  using Traits = paddle::platform::FunctionTraits<Functor>;
  const int kArity =
      Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
                    paddle::platform::errors::InvalidArgument(
                        "The number of inputs is expected to be equal to the "
                        "arity of functor. But recieved: the number of inputs "
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
458
  PADDLE_ENFORCE_LE(kArity,
L
limingshu 已提交
459
                    3,
460
                    paddle::platform::errors::InvalidArgument(
461 462
                        "Currently only broadcast of ternary is supported "
                        "and verified, but received %d.",
463
                        kArity));
464 465 466 467 468 469 470
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
                    paddle::platform::errors::InvalidArgument(
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));
471
  int in_vec_size = 4;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
  int out_vec_size = 4;
  if (NumOuts > 1) {
    for (int i = 0; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
          paddle::platform::errors::InvalidArgument(
              "The shape of each output tensor shall be identical yet, but "
              "%dth output tensor`s shape is not.",
              i));
      out_vec_size = std::min(
          paddle::platform::GetVectorizedSize<OutT>((*outs)[i]->data<OutT>()),
          out_vec_size);
    }
  } else {
    out_vec_size =
        paddle::platform::GetVectorizedSize<OutT>((*outs)[0]->data<OutT>());
  }

491 492
  for (auto *in : ins) {
    auto temp_size = paddle::platform::GetVectorizedSize<InT>(in->data<InT>());
493 494 495
    in_vec_size = in->dims() == (*outs)[0]->dims()
                      ? std::min(temp_size, in_vec_size)
                      : in_vec_size;
496 497 498 499 500
  }
  int vec_size = std::min(out_vec_size, in_vec_size);

  switch (vec_size) {
    case 4: {
501 502 503 504 505 506
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               4>(ctx, ins, outs, axis, func);
507 508 509
      break;
    }
    case 2: {
510 511 512 513 514 515
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               2>(ctx, ins, outs, axis, func);
516 517 518
      break;
    }
    case 1: {
519 520 521 522 523 524
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               1>(ctx, ins, outs, axis, func);
525 526 527 528 529 530 531 532 533 534 535
      break;
    }
    default: {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}

}  // namespace pten