未验证 提交 48f061fb 编写于 作者: L limingshu 提交者: GitHub

Support multi-output feature for elementwise (#38410)

* first commit

* pass ctest of  elementwise_div_grad
上级 85f5d264
......@@ -162,7 +162,8 @@ struct DimensionsTransform {
}
};
template <ElementwiseType ET, typename InT, typename OutT, typename Functor>
template <ElementwiseType ET, typename InT, typename OutT, typename Functor,
int NumOuts = 1>
void LaunchBroadcastElementwiseCudaKernel(
const platform::CUDADeviceContext &ctx,
const std::vector<const framework::Tensor *> &ins,
......@@ -190,11 +191,12 @@ void LaunchBroadcastElementwiseCudaKernel(
for (int i = 0; i < pt_outputs_tmp.size(); i++) {
pt_outputs.push_back(pt_outputs_tmp[i].get());
}
pten::LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT>(
pten::LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
ctx, pt_inputs, &pt_outputs, axis, func);
}
template <ElementwiseType ET, typename InT, typename OutT, typename Functor>
template <ElementwiseType ET, typename InT, typename OutT, typename Functor,
int NumOuts = 1>
void LaunchElementwiseCudaKernel(
const platform::CUDADeviceContext &cuda_ctx,
const std::vector<const framework::Tensor *> &ins,
......@@ -222,8 +224,8 @@ void LaunchElementwiseCudaKernel(
for (int i = 0; i < pt_outputs_tmp.size(); i++) {
pt_outputs.push_back(pt_outputs_tmp[i].get());
}
pten::LaunchElementwiseCudaKernel<ET, InT, OutT>(cuda_ctx, pt_inputs,
&pt_outputs, axis, func);
pten::LaunchElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
cuda_ctx, pt_inputs, &pt_outputs, axis, func);
}
} // namespace operators
......
......@@ -38,7 +38,8 @@ namespace kps = paddle::operators::kernel_primitives;
using ElementwiseType = pten::ElementwiseType;
template <ElementwiseType ET, typename InT, typename OutT, typename Functor>
template <ElementwiseType ET, typename InT, typename OutT, typename Functor,
int NumOuts = 1>
void LaunchSameDimsElementwiseCudaKernel(
const platform::CUDADeviceContext &ctx,
const std::vector<const framework::Tensor *> &ins,
......@@ -66,8 +67,8 @@ void LaunchSameDimsElementwiseCudaKernel(
for (int i = 0; i < pt_outputs_tmp.size(); i++) {
pt_outputs.push_back(pt_outputs_tmp[i].get());
}
pten::LaunchSameDimsElementwiseCudaKernel<ET, InT, OutT>(ctx, pt_inputs,
&pt_outputs, func);
pten::LaunchSameDimsElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
ctx, pt_inputs, &pt_outputs, func);
}
} // namespace operators
......
......@@ -19,7 +19,11 @@ limitations under the License. */
namespace pten {
template <ElementwiseType ET, typename InT, typename OutT, typename Functor>
template <ElementwiseType ET,
typename InT,
typename OutT,
typename Functor,
int NumOuts = 1>
void LaunchElementwiseCudaKernel(
const paddle::platform::CUDADeviceContext &cuda_ctx,
const std::vector<const DenseTensor *> &ins,
......@@ -33,14 +37,14 @@ void LaunchElementwiseCudaKernel(
dims_size.emplace_back(in->dims().size());
}
if (no_broadcast_flag) {
LaunchSameDimsElementwiseCudaKernel<ET, InT, OutT>(
LaunchSameDimsElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
cuda_ctx, ins, outs, func);
} else {
axis = axis == -1
? *std::max_element(dims_size.begin(), dims_size.end()) -
*std::min_element(dims_size.begin(), dims_size.end())
: axis;
LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT>(
LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
cuda_ctx, ins, outs, axis, func);
}
}
......
......@@ -208,7 +208,7 @@ __device__ void ElementwiseBroadcastKernelImpl(
int block_offset,
Functor func) {
InT args[Arity][VecSize];
OutType<OutT, NumOuts> result[VecSize];
ConditionalT<OutT, NumOuts> result[VecSize];
#pragma unroll
for (int i = 0; i < Arity; i++) {
......@@ -224,7 +224,7 @@ __device__ void ElementwiseBroadcastKernelImpl(
constexpr bool kCallElementwiseAny =
paddle::platform::FunctionTraits<Functor>::has_pointer_args;
ElementwisePrimitiveCaller<InT,
OutType<OutT, NumOuts>,
ConditionalT<OutT, NumOuts>,
VecSize,
Functor,
Arity,
......@@ -455,20 +455,19 @@ void LaunchBroadcastElementwiseCudaKernel(
"is %d, the arity of functor is %d.",
ins.size(),
kArity));
PADDLE_ENFORCE_EQ(kArity,
2,
PADDLE_ENFORCE_LE(kArity,
ElementwiseType::kTernary,
paddle::platform::errors::InvalidArgument(
"Currently only broadcast of binary is supported and "
"verified, but received %d.",
"Currently only broadcast of ternary is supported "
"and verified, but received %d.",
kArity));
PADDLE_ENFORCE_EQ(
outs->size(),
NumOuts,
paddle::platform::errors::InvalidArgument(
"Number of outputs shall equal to number of functions, "
"but number of outputs is %d, number of functions is %d.",
outs->size(),
NumOuts));
PADDLE_ENFORCE_EQ(outs->size(),
NumOuts,
paddle::platform::errors::InvalidArgument(
"Number of outputs shall equal to number of functions, "
"but number of outputs is %d, of functions is %d.",
outs->size(),
NumOuts));
int in_vec_size = 4;
int out_vec_size = 4;
if (NumOuts > 1) {
......
......@@ -27,7 +27,7 @@ enum ElementwiseType { kUnary = 1, kBinary = 2, kTernary = 3, kAny = -1 };
/* Packing scalar type T(float, int etc.) into Array<T, NumOuts> type
for supporting multiple-output feature in elementwise system.*/
template <class T, int Num>
using OutType =
using ConditionalT =
typename std::conditional_t<Num == 1, T, paddle::framework::Array<T, Num>>;
template <typename InT,
......@@ -86,7 +86,7 @@ template <typename OutT, int VecSize, bool IsBoundary, int NumOuts>
struct ElementwiseWriteDataCaller {
__device__ __forceinline__ void operator()(
paddle::framework::Array<OutT *, NumOuts> outs,
OutType<OutT, NumOuts> src[VecSize],
ConditionalT<OutT, NumOuts> src[VecSize],
int block_offset,
int num) {
OutT dst[NumOuts][VecSize];
......
......@@ -55,16 +55,17 @@ template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize,
bool IsBoundary>
__device__ void VectorizedElementwiseKernelImpl(
const paddle::framework::Array<const InT *__restrict__, Arity> &in,
OutT *out,
paddle::framework::Array<OutT *, NumOuts> outs,
int num,
int data_offset,
Functor func) {
InT args[Arity][VecSize];
OutT result[VecSize];
ConditionalT<OutT, NumOuts> result[VecSize];
#pragma unroll
for (int i = 0; i < Arity; i++) {
......@@ -73,36 +74,53 @@ __device__ void VectorizedElementwiseKernelImpl(
args[i], in[i] + data_offset, num);
}
const bool kCallElementwiseAny =
constexpr bool kCallElementwiseAny =
paddle::platform::FunctionTraits<Functor>::has_pointer_args;
ElementwisePrimitiveCaller<InT,
OutT,
ConditionalT<OutT, NumOuts>,
VecSize,
Functor,
Arity,
kCallElementwiseAny>()(func, args, result);
kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
out + data_offset, result, num);
ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
outs, result, data_offset, num);
}
template <typename InT, typename OutT, typename Functor, int Arity, int VecSize>
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize>
__global__ void VectorizedElementwiseKernel(
paddle::framework::Array<const InT *__restrict__, Arity> ins,
OutT *out,
paddle::framework::Array<OutT *, NumOuts> outs,
int size,
int main_offset,
Functor func) {
int data_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
for (; data_offset < main_offset; data_offset += stride) {
VectorizedElementwiseKernelImpl<InT, OutT, Functor, Arity, VecSize, false>(
ins, out, VecSize * BLOCK_NUM_X, data_offset, func);
VectorizedElementwiseKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
false>(
ins, outs, VecSize * BLOCK_NUM_X, data_offset, func);
}
int num = size - data_offset;
if (num > 0) {
VectorizedElementwiseKernelImpl<InT, OutT, Functor, Arity, VecSize, true>(
ins, out, num, data_offset, func);
VectorizedElementwiseKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
true>(ins, outs, num, data_offset, func);
}
}
......@@ -121,7 +139,12 @@ int GetVectorizedSizeForTensors(const std::vector<const DenseTensor *> &ins,
return vec_size;
}
template <typename InT, typename OutT, typename Functor, int Arity, int VecSize>
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize>
void ElementwiseCudaKernel(const paddle::platform::CUDADeviceContext &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
......@@ -131,11 +154,15 @@ void ElementwiseCudaKernel(const paddle::platform::CUDADeviceContext &ctx,
int grid_size =
((numel + VecSize - 1) / VecSize + block_size - 1) / block_size;
auto stream = ctx.stream();
OutT *out_data = (*outs)[0]->mutable_data<OutT>();
paddle::framework::Array<const InT *__restrict__, Arity> ins_data;
for (int i = 0; i < Arity; i++) {
paddle::framework::Array<OutT *, NumOuts> outs_data;
for (int i = 0; i < Arity; ++i) {
ins_data[i] = ins[i]->data<InT>();
}
for (int i = 0; i < NumOuts; ++i) {
outs_data[i] = (*outs)[i]->mutable_data<OutT>();
}
#ifdef PADDLE_WITH_XPU2
block_size = 128;
grid_size = 8;
......@@ -144,20 +171,26 @@ void ElementwiseCudaKernel(const paddle::platform::CUDADeviceContext &ctx,
OutT,
Functor,
Arity,
NumOuts,
VecSize><<<grid_size, block_size, 0, stream>>>(
ins_data, out_data, numel, main_offset, func);
ins_data, outs_data, numel, main_offset, func);
#else
int main_offset = (numel / (VecSize * block_size)) * VecSize * block_size;
VectorizedElementwiseKernel<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize><<<grid_size, block_size, 0, stream>>>(
ins_data, out_data, numel, main_offset, func);
ins_data, outs_data, numel, main_offset, func);
#endif
}
template <ElementwiseType ET, typename InT, typename OutT, typename Functor>
template <ElementwiseType ET,
typename InT,
typename OutT,
typename Functor,
int NumOuts = 1>
void LaunchSameDimsElementwiseCudaKernel(
const paddle::platform::CUDADeviceContext &ctx,
const std::vector<const DenseTensor *> &ins,
......@@ -174,19 +207,39 @@ void LaunchSameDimsElementwiseCudaKernel(
"is %d, the arity of functor is %d.",
ins.size(),
kArity));
PADDLE_ENFORCE_EQ(outs->size(),
NumOuts,
paddle::platform::errors::InvalidArgument(
"Number of outputs shall equal to number of functions, "
"but number of outputs is %d, of functions is %d.",
outs->size(),
NumOuts));
if (NumOuts > 1) {
for (int i = 1; i < NumOuts; ++i) {
PADDLE_ENFORCE_EQ(
(*outs)[i]->dims(),
(*outs)[0]->dims(),
paddle::platform::errors::InvalidArgument(
"The shape of each output tensor shall be identical yet, "
"but %dth output tensor`s shape is not.",
i));
}
}
// calculate the max vec_size for all ins and outs
int vec_size = GetVectorizedSizeForTensors<InT, OutT>(ins, *outs);
switch (vec_size) {
case 4:
ElementwiseCudaKernel<InT, OutT, Functor, kArity, 4>(
ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 4>(
ctx, ins, outs, func);
break;
case 2:
ElementwiseCudaKernel<InT, OutT, Functor, kArity, 2>(
ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 2>(
ctx, ins, outs, func);
break;
case 1:
ElementwiseCudaKernel<InT, OutT, Functor, kArity, 1>(
ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 1>(
ctx, ins, outs, func);
break;
default: {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册