overlap_add_kernel.cu 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/overlap_add_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/overlap_add_functor.h"

namespace phi {

template <typename T, typename Context>
void OverlapAddKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      int hop_length,
                      int axis,
                      DenseTensor* out) {
  dev_ctx.template Alloc<T>(out);
  const size_t x_rank = x.dims().size();
  const size_t out_rank = out->dims().size();

  const int n_frames = (axis == 0) ? x.dims()[0] : x.dims()[x_rank - 1];
  const int frame_length = (axis == 0) ? x.dims()[1] : x.dims()[x_rank - 2];
  const int seq_length =
      (axis == 0) ? out->dims()[0] : out->dims()[out_rank - 1];

  // auto& dev_ctx = ctx.device_context<Context>();

  DenseTensor x_(x.type());
  x_ = x;

  phi::DDim preserved_dims;
  if (out_rank > 2) {
    // Save dims used to flatten both input and output tensors and restore
    // output tensor.
    phi::DDim x_resized_dims;
    phi::DDim out_resized_dims;
    if (axis == 0) {
      preserved_dims = phi::slice_ddim(out->dims(), 1, out_rank);
      x_resized_dims = {n_frames, frame_length, phi::product(preserved_dims)};
      out_resized_dims = {seq_length, phi::product(preserved_dims)};
    } else {
      preserved_dims = phi::slice_ddim(out->dims(), 0, out_rank - 1);
      x_resized_dims = {phi::product(preserved_dims), frame_length, n_frames};
      out_resized_dims = {phi::product(preserved_dims), seq_length};
    }
    x_.Resize(x_resized_dims);
    out->Resize(out_resized_dims);
  }

  DenseTensor trans_x(x_.type());
  DenseTensor trans_out(out->type());

  // Transpose input and output in case that axis is 0.
  if (axis == 0) {
    if (out_rank == 1U) {
      trans_out = *out;

      std::vector<int> perm_x{1, 0};
      auto x_dims_vec = phi::vectorize(x_.dims());
      for (int i = 0; i < x_.dims().size(); ++i) {
        x_dims_vec[i] = x_.dims()[perm_x[i]];
      }
      trans_x.Resize(phi::make_ddim(x_dims_vec));
      dev_ctx.template Alloc<T>(&trans_x);
      phi::funcs::TransCompute<Context, T>(
          perm_x.size(), dev_ctx, x_, &trans_x, perm_x);
    } else {
      std::vector<int> perm_out{1, 0};
      auto out_dims_vec = phi::vectorize(out->dims());
      for (int i = 0; i < out->dims().size(); ++i) {
        out_dims_vec[i] = out->dims()[perm_out[i]];
      }
      trans_out.Resize(phi::make_ddim(out_dims_vec));
      dev_ctx.template Alloc<T>(&trans_out);
      phi::funcs::TransCompute<Context, T>(
          perm_out.size(), dev_ctx, *out, &trans_out, perm_out);

      std::vector<int> perm_x{2, 1, 0};
      auto x_dims_vec = phi::vectorize(x_.dims());
      for (int i = 0; i < x_.dims().size(); ++i) {
        x_dims_vec[i] = x_.dims()[perm_x[i]];
      }
      trans_x.Resize(phi::make_ddim(x_dims_vec));
      dev_ctx.template Alloc<T>(&trans_x);
      phi::funcs::TransCompute<Context, T>(
          perm_x.size(), dev_ctx, x_, &trans_x, perm_x);
    }
  } else {
    trans_x = x_;
    trans_out = *out;
  }

  OverlapAddFunctor<Context, T>()(dev_ctx,
                                  &trans_x,
                                  &trans_out,
                                  seq_length,
                                  frame_length,
                                  n_frames,
                                  hop_length,
                                  /*is_grad*/ false);

  // Transpose output in case axis is 0.
  if (axis == 0 && out_rank > 1U) {
    std::vector<int> perm_out{1, 0};
    phi::funcs::TransCompute<Context, T>(
        perm_out.size(), dev_ctx, trans_out, out, perm_out);
  }

  // Restore output dims when the number of dims is larger than 2.
  if (out_rank > 2) {
    std::vector<int64_t> restored_out_shape;
    for (int i = 0; i < preserved_dims.size(); i++) {
      restored_out_shape.push_back(preserved_dims[i]);
    }

    if (axis == 0) {
      // (seq_length, ...)
      restored_out_shape.insert(restored_out_shape.begin(), seq_length);
    } else {
      // (..., seq_length)
      restored_out_shape.push_back(seq_length);
    }

    out->Resize(phi::make_ddim(restored_out_shape));
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(overlap_add,
                   GPU,
                   ALL_LAYOUT,
                   phi::OverlapAddKernel,
                   int,
                   int64_t,
                   float,
                   double,
149
                   phi::dtype::float16,
150 151
                   paddle::platform::complex<float>,
                   paddle::platform::complex<double>) {}