batch_norm_op.cc 27.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
Q
qingqing01 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
Q
qingqing01 已提交
18
#include <unordered_map>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/data_layout.h"
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
23 24 25 26

namespace paddle {
namespace operators {

Q
qingqing01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Scale"),
                 "Input(Scale) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Mean"),
                 "Input(Mean) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Variance"),
                 "Input(Variance) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Y"),
                 "Output(Y) of ConvOp should not be null.");
  bool is_test = ctx->Attrs().Get<bool>("is_test");
  if (!is_test) {
    PADDLE_ENFORCE(ctx->HasOutput("MeanOut"),
                   "Output(MeanOut) of ConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"),
                   "Output(VarianceOut) of ConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("SavedMean"),
                   "Output(SavedMean) of ConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"),
                   "Output(SavedVariance) of ConvOp should not be null.");
Q
Qiao Longfei 已提交
49
  }
K
Kexin Zhao 已提交
50

Q
qingqing01 已提交
51 52 53 54 55 56 57 58 59 60
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
                    "Mean and MeanOut should share the same memory");
  PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0], ctx->Outputs("VarianceOut")[0],
                    "Variance and VarianceOut should share the same memory");

  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

61 62 63 64 65 66 67
  if (ctx->IsRuntime() && ctx->HasInput("MomentumTensor")) {
    auto mom = ctx->Inputs("MomentumTensor");
    PADDLE_ENFORCE_EQ(mom.size(), 1,
                      platform::errors::InvalidArgument(
                          "Input(MomentumTensor) size must be 1"));
  }

68 69 70 71 72 73 74 75 76 77 78 79
  PADDLE_ENFORCE_GE(
      x_dims.size(), 2,
      "ShapeError: the dimension of input X must greater than or equal to 2."
      "But received: the shape of input X = [%s], the dimension of input X ="
      "[%d]",
      x_dims, x_dims.size());
  PADDLE_ENFORCE_LE(
      x_dims.size(), 5,
      "ShapeError: the dimension of input X must smaller than or equal to 5."
      "But received: the shape of input X = [%s], the dimension of input X ="
      "[%d]",
      x_dims, x_dims.size());
Q
qingqing01 已提交
80 81

  const int64_t C =
82 83 84
      ((this->IsMKLDNNType() == true) || (data_layout == DataLayout::kNCHW)
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);
Q
qingqing01 已提交
85

86 87
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
88

89 90 91 92 93 94 95 96 97 98
  PADDLE_ENFORCE_EQ(scale_dim.size(), 1UL,
                    "ShapeError: the dimension of scale must equal to 1."
                    "But received: the shape of scale is [%s], the dimension "
                    "of scale is [%d]",
                    scale_dim, scale_dim.size());
  PADDLE_ENFORCE_EQ(
      bias_dim.size(), 1UL,
      "ShapeError: the dimension of bias must equal to 1."
      "But received: the shape of bias is [%s],the dimension of bias is [%d]",
      bias_dim, bias_dim.size());
C
ceci3 已提交
99

100 101 102 103 104 105 106
  bool check = true;
  if ((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0 ||
                              framework::product(bias_dim) <= 0)) {
    check = false;
  }

  if (check) {
107 108 109 110 111 112 113 114
    PADDLE_ENFORCE_EQ(scale_dim[0], C,
                      "ShapeError: the shape of scale must equal to [%d]"
                      "But received: the shape of scale is [%d]",
                      C, scale_dim[0]);
    PADDLE_ENFORCE_EQ(bias_dim[0], C,
                      "ShapeError: the shape of bias must equal to [%d]"
                      "But received: the shape of bias is [%d]",
                      C, bias_dim[0]);
115
  }
Q
qingqing01 已提交
116 117 118 119 120 121 122 123 124 125
  ctx->SetOutputDim("Y", x_dims);
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
126
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
Q
qingqing01 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Scale")->type(),
                    "Scale input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Bias")->type(),
                    "Bias input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Mean")->type(),
                    "Mean input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Variance")->type(),
                    "Variance input should be of float type");

  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
146
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
147 148 149 150
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
K
Kexin Zhao 已提交
151
  }
Q
qingqing01 已提交
152
#endif
Q
Qiao Longfei 已提交
153

Q
qingqing01 已提交
154 155 156 157
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
framework::OpKernelType BatchNormOp::GetKernelTypeForVar(
    const std::string &var_name, const Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "X") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(),
          framework::StringToDataLayout(data_layout));
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Q
qingqing01 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
        PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                       "'epsilon' should be between 0.0 and 0.001.");
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
210 211 212 213 214
  AddInput("MomentumTensor",
           "(Tensor<float32>, optional) If provided, batch_norm will "
           "use this as momentum, this has a higher priority than "
           "attr(momentum), the shape of this tensor MUST BE [1].")
      .AsDispensable();
Q
qingqing01 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_with_relu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
  AddComment(R"DOC(
245
Batch Normalization.
Q
Qiao Longfei 已提交
246

247 248 249 250 251 252
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
253 254

)DOC");
Q
qingqing01 已提交
255
}
C
chengduo 已提交
256

Q
Qiao Longfei 已提交
257
template <typename T>
Q
QI JUN 已提交
258 259
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
260 261 262
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
263
    float momentum = ctx.Attr<float>("momentum");
Q
Qiao Longfei 已提交
264
    const bool is_test = ctx.Attr<bool>("is_test");
265 266 267 268
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

    bool global_stats = is_test || use_global_stats;

Q
QI JUN 已提交
269 270 271
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
272 273 274

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
275 276
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
277 278
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
279 280
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

296
    if (!global_stats) {
Q
Qiao Longfei 已提交
297 298 299 300 301 302 303 304
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

305 306 307 308 309 310
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
311 312
        // Only 1 element in normalization dimension,
        // we skip the batch norm calculation, let y = x.
313
        framework::TensorCopy(*x, ctx.GetPlace(), y);
314 315 316
        return;
      }

Q
QI JUN 已提交
317 318
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
319 320 321 322 323 324 325 326 327 328 329 330
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
331
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
345
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
346 347
      }

348 349 350 351 352 353 354
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        momentum = mom_tensor->data<float>()[0];
      }

Q
Qiao Longfei 已提交
355 356 357 358 359 360 361 362
      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
363
    if (global_stats) {
Q
Qiao Longfei 已提交
364 365 366 367 368 369 370 371 372 373 374
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
375 376
        global_stats ? ctx.Input<Tensor>("Mean")->data<T>()
                     : ctx.Output<Tensor>("SavedMean")->data<T>(),
Q
Qiao Longfei 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
390 391
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
392 393 394 395 396 397 398 399
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
400
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
401 402 403 404 405 406 407 408 409
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
410
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
411 412 413 414
    }
  }
};

Q
qingqing01 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
  PADDLE_ENFORCE(ctx->HasInput("X"));
  PADDLE_ENFORCE(ctx->HasInput("Scale"), "Input(scale) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                 "Input(Y@GRAD) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("SavedMean"),
                 "Input(SavedMean) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("SavedVariance"),
                 "Input(SavedVariance) should not be null");

  // check output
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")),
                   "Output(Scale@GRAD) and Output(Bias@GRAD) should not be "
                   "null at same time");
  }
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
    PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_mkldnn"),
                   "Using global stats during training is not supported "
                   "in gradient op kernel of batch_norm_mkldnn_op now.");
  }
Q
Qiao Longfei 已提交
439

Q
qingqing01 已提交
440 441 442 443 444
  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
  const int C = (data_layout == DataLayout::kNCHW ? x_dims[1]
                                                  : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
445

Q
qingqing01 已提交
446 447 448 449
  ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
450
  }
Q
qingqing01 已提交
451
}
Q
Qiao Longfei 已提交
452

Q
qingqing01 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
    PADDLE_THROW("can't find Y@GRAD");
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW("can't find Y@GRAD");
  }
468

Q
qingqing01 已提交
469 470 471
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
472

473
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
474 475
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
476 477 478 479 480 481
    // TODO(jczaja): Add support for NHWC
    const std::string data_layout = ctx.Attr<std::string>("data_layout");
    PADDLE_ENFORCE_NE(
        data_layout, "NHWC",
        platform::errors::Unimplemented(
            "Batch Norm MKLDNN grad does not support NHWC data format yet"));
Q
qingqing01 已提交
482 483 484
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
485
#endif
486

487 488 489
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(), layout,
      library);
Q
qingqing01 已提交
490
}
Q
Qiao Longfei 已提交
491 492

template <typename T>
Q
QI JUN 已提交
493
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
494 495 496 497 498 499 500 501 502
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
503
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
504 505
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const float epsilon = ctx.Attr<float>("epsilon");
Q
QI JUN 已提交
506 507
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
508 509 510 511

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
512 513
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
514 515
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
516 517
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
518 519 520 521 522 523 524 525
    const int sample_size = x->numel() / N / C;

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
526 527 528 529 530 531 532 533

    const T *mean_data = saved_mean->data<T>();
    const T *inv_var_data = saved_inv_variance->data<T>();
    Tensor inv_var_tensor;
    if (use_global_stats) {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_variance = ctx.Input<Tensor>("Variance");
      mean_data = running_mean->data<T>();
Z
Zeng Jinle 已提交
534
      inv_var_tensor.Resize({C});
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
      T *running_inv_var_data = inv_var_tensor.mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> inv_var_tmp(running_inv_var_data, C);
      ConstEigenVectorArrayMap<T> var_arr(running_variance->data<T>(), C);

      inv_var_tmp = (var_arr + epsilon).sqrt().inverse().eval();
      inv_var_data = running_inv_var_data;
    }

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

    T *d_bias_data = nullptr;
    T *d_scale_data = nullptr;
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
    }
Q
Qiao Longfei 已提交
555 556 557 558 559

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
560 561
    EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
Q
Qiao Longfei 已提交
562

563 564 565 566
    if (d_scale && d_bias) {
      d_bias_arr.setZero();
      d_scale_arr.setZero();
    }
Q
Qiao Longfei 已提交
567

568 569
    if ((N * sample_size) == 1 && !use_global_stats) {
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
570 571 572
      return;
    }

573 574
    int scale_coefff = use_global_stats ? 1 : N * sample_size;
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / scale_coefff;
Q
Qiao Longfei 已提交
575

L
lvmengsi 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    Tensor dy_sum;
    dy_sum.Resize({C});
    dy_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_sum_arr(dy_sum.mutable_data<T>(ctx.GetPlace()),
                                      C);

    Tensor dy_mul_x_sub_mean_mul_invstd_sum;
    dy_mul_x_sub_mean_mul_invstd_sum.Resize({C});
    dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_mul_x_sub_mean_mul_invstd_sum_arr(
        dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace()), C);

    dy_sum_arr.setZero();
    dy_mul_x_sub_mean_mul_invstd_sum_arr.setZero();

Q
QI JUN 已提交
591 592
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
593 594 595 596 597 598
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);
        d_x_arr.setZero();

L
lvmengsi 已提交
599 600 601 602 603 604 605 606
        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          dy_sum_arr(c) += d_y_arr.col(nc).sum();
          dy_mul_x_sub_mean_mul_invstd_sum_arr(c) +=
              ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
                  .sum();
        }

607
        if (d_scale && d_bias) {
L
lvmengsi 已提交
608 609
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
Q
Qiao Longfei 已提交
610
        }
L
lvmengsi 已提交
611

612 613 614 615 616
        if (!use_global_stats) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) +=
                scale_inv_var_nhw(c) *
L
lvmengsi 已提交
617 618 619
                (d_y_arr.col(nc) * N * sample_size - dy_sum_arr(c) -
                 (x_arr.col(nc) - mean_arr[c]) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr(c) * inv_var_arr(c));
620 621 622 623 624 625
          }
        } else {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) += scale_inv_var_nhw(c) * d_y_arr.col(nc);
          }
Q
Qiao Longfei 已提交
626 627 628
        }
        break;
      }
Q
QI JUN 已提交
629
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
630 631 632 633 634 635
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);
        d_x_arr.setZero();

L
lvmengsi 已提交
636 637 638 639 640
        for (int nhw = 0; nhw < N * sample_size; ++nhw) {
          dy_sum_arr += d_y_arr.col(nhw);
          dy_mul_x_sub_mean_mul_invstd_sum_arr +=
              (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
        }
641 642

        if (d_scale && d_bias) {
L
lvmengsi 已提交
643 644
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
645 646 647 648 649 650
        }

        if (!use_global_stats) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) +=
                scale_inv_var_nhw *
L
lvmengsi 已提交
651 652 653
                (d_y_arr.col(nhw) * N * sample_size - dy_sum_arr -
                 (x_arr.col(nhw) - mean_arr) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr * inv_var_arr);
654 655 656 657 658
          }
        } else {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) += scale_inv_var_nhw * d_y_arr.col(nhw);
          }
Q
Qiao Longfei 已提交
659 660 661 662
        }
        break;
      }
      default:
Q
QI JUN 已提交
663
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
664 665 666 667
    }
  }
};

Q
qingqing01 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
std::unique_ptr<framework::OpDesc> BatchNormGradMaker::Apply() const {
  auto *op = new framework::OpDesc();
  op->SetType(GradOpType());
  op->SetInput("X", Input("X"));
  op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));

  op->SetInput("Scale", Input("Scale"));
  op->SetInput("Bias", Input("Bias"));
  op->SetInput("SavedMean", Output("SavedMean"));
  op->SetInput("SavedVariance", Output("SavedVariance"));

  // used when setting use_global_stats True during training
  if (boost::get<bool>(GetAttr("use_global_stats"))) {
    op->SetInput("Mean", Output("MeanOut"));
    op->SetInput("Variance", Output("VarianceOut"));
  }
684

Q
qingqing01 已提交
685
  op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
686

Q
qingqing01 已提交
687 688 689
  op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
Y
Yu Yang 已提交
690

Q
qingqing01 已提交
691 692
  return std::unique_ptr<framework::OpDesc>(op);
}
Y
Yu Yang 已提交
693

Q
Qiao Longfei 已提交
694 695 696 697
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
698
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
699 700
                  ops::BatchNormOpInferVarType, ops::BatchNormGradMaker);
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);
Y
Yu Yang 已提交
701

Q
QI JUN 已提交
702
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
703 704
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
705 706
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
707 708
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);