test_expand_v2_op.py 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
21
from paddle.fluid import compiler, Program, program_guard, core
22
import paddle
23
from paddle.fluid.framework import _test_eager_guard
24 25 26
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
27 28 29 30


# Situation 1: shape is a list(without tensor)
class TestExpandV2OpRank1(OpTest):
31

32 33 34
    def setUp(self):
        self.op_type = "expand_v2"
        self.init_data()
H
hong 已提交
35
        self.python_api = paddle.expand
36 37 38 39 40 41 42 43 44 45 46 47

        self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
        self.attrs = {'shape': self.shape}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.shape = [100]
        self.expand_times = [1]

    def test_check_output(self):
H
hong 已提交
48
        self.check_output(check_eager=True)
49 50

    def test_check_grad(self):
H
hong 已提交
51
        self.check_grad(['X'], 'Out', check_eager=True)
52 53 54


class TestExpandV2OpRank2_DimExpanding(TestExpandV2OpRank1):
55

56 57 58 59 60 61 62
    def init_data(self):
        self.ori_shape = [120]
        self.shape = [2, 120]
        self.expand_times = [2, 1]


class TestExpandV2OpRank2(TestExpandV2OpRank1):
63

64 65 66 67 68 69 70
    def init_data(self):
        self.ori_shape = [1, 140]
        self.shape = [12, 140]
        self.expand_times = [12, 1]


class TestExpandV2OpRank3_Corner(TestExpandV2OpRank1):
71

72 73 74 75 76 77 78
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.shape = (2, 10, 5)
        self.expand_times = (1, 1, 1)


class TestExpandV2OpRank4(TestExpandV2OpRank1):
79

80 81 82 83 84 85 86 87
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.shape = (-1, -1, -1, -1)
        self.expand_times = (1, 1, 1, 1)


# Situation 2: shape is a list(with tensor)
class TestExpandV2OpRank1_tensor_attr(OpTest):
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    def setUp(self):
        self.op_type = "expand_v2"
        self.init_data()
        expand_shapes_tensor = []
        for index, ele in enumerate(self.expand_shape):
            expand_shapes_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'expand_shapes_tensor': expand_shapes_tensor,
        }
        self.attrs = {"shape": self.infer_expand_shape}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.expand_times = [1]
        self.expand_shape = [100]
        self.infer_expand_shape = [-1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestExpandV2OpRank2_Corner_tensor_attr(TestExpandV2OpRank1_tensor_attr):
119

120 121 122 123 124 125 126 127 128
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [1, 1]
        self.expand_shape = [12, 14]
        self.infer_expand_shape = [12, -1]


# Situation 3: shape is a tensor
class TestExpandV2OpRank1_tensor(OpTest):
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    def setUp(self):
        self.op_type = "expand_v2"
        self.init_data()

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'Shape': np.array(self.expand_shape).astype("int32"),
        }
        self.attrs = {}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.expand_times = [2, 1]
        self.expand_shape = [2, 100]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


# Situation 4: input x is Integer
class TestExpandV2OpInteger(OpTest):
156

157 158 159
    def setUp(self):
        self.op_type = "expand_v2"
        self.inputs = {
160
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int32")
161 162 163 164 165 166 167 168 169 170 171
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 5: input x is Bool
class TestExpandV2OpBoolean(OpTest):
172

173 174 175 176 177 178 179 180 181 182 183 184 185
    def setUp(self):
        self.op_type = "expand_v2"
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 56: input x is Integer
class TestExpandV2OpInt64_t(OpTest):
186

187 188 189
    def setUp(self):
        self.op_type = "expand_v2"
        self.inputs = {
190
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
191 192 193 194 195 196 197 198 199 200
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


class TestExpandV2Error(unittest.TestCase):
201

202 203
    def test_errors(self):
        with program_guard(Program(), Program()):
204 205
            x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
206 207 208 209 210
            shape = [2, 2]
            self.assertRaises(TypeError, paddle.tensor.expand, x1, shape)
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, paddle.tensor.expand, x2, shape)
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool")
L
lilong12 已提交
211
            x3.stop_gradient = False
212 213 214 215 216
            self.assertRaises(ValueError, paddle.tensor.expand, x3, shape)


# Test python API
class TestExpandV2API(unittest.TestCase):
217

218 219
    def test_api(self):
        input = np.random.random([12, 14]).astype("float32")
220 221 222 223
        x = fluid.layers.data(name='x',
                              shape=[12, 14],
                              append_batch_size=False,
                              dtype="float32")
224 225

        positive_2 = fluid.layers.fill_constant([1], "int32", 12)
226 227 228 229
        expand_shape = fluid.layers.data(name="expand_shape",
                                         shape=[2],
                                         append_batch_size=False,
                                         dtype="int32")
230 231 232 233 234 235 236 237 238 239

        out_1 = paddle.expand(x, shape=[12, 14])
        out_2 = paddle.expand(x, shape=[positive_2, 14])
        out_3 = paddle.expand(x, shape=expand_shape)

        g0 = fluid.backward.calc_gradient(out_2, x)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3 = exe.run(fluid.default_main_program(),
                                      feed={
240 241
                                          "x":
                                          input,
242 243 244 245 246 247 248 249 250
                                          "expand_shape":
                                          np.array([12, 14]).astype("int32")
                                      },
                                      fetch_list=[out_1, out_2, out_3])
        assert np.array_equal(res_1, np.tile(input, (1, 1)))
        assert np.array_equal(res_2, np.tile(input, (1, 1)))
        assert np.array_equal(res_3, np.tile(input, (1, 1)))


251
class TestExpandInferShape(unittest.TestCase):
252

253 254 255 256 257
    def test_shape_with_var(self):
        with program_guard(Program(), Program()):
            x = paddle.static.data(shape=[-1, 1, 3], name='x')
            fake_var = paddle.randn([2, 3])
            target_shape = [
258 259
                -1, paddle.shape(fake_var)[0],
                paddle.shape(fake_var)[1]
260 261 262 263 264
            ]
            out = paddle.expand(x, shape=target_shape)
            self.assertListEqual(list(out.shape), [-1, -1, -1])


265
# Test python Dygraph API
266
class TestExpandV2DygraphAPI(unittest.TestCase):
267

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    def test_expand_times_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            with _test_eager_guard():
                paddle.seed(1)
                a = paddle.rand([2, 5])
                egr_expand_1 = paddle.expand(a, shape=[2, 5])
                np_array = np.array([2, 5])
                egr_expand_2 = paddle.expand(a, shape=np_array)

            paddle.seed(1)
            a = paddle.rand([2, 5])
            expand_1 = paddle.expand(a, shape=[2, 5])
            np_array = np.array([2, 5])
            expand_2 = paddle.expand(a, shape=np_array)

283 284 285 286 287
            np.testing.assert_array_equal(egr_expand_1.numpy(),
                                          egr_expand_2.numpy())
            np.testing.assert_array_equal(expand_1.numpy(), expand_2.numpy())
            np.testing.assert_array_equal(expand_1.numpy(),
                                          egr_expand_1.numpy())
288 289


290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
class TestExpandDoubleGradCheck(unittest.TestCase):

    def expand_wrapper(self, x):
        return paddle.expand(x[0], [2, 3])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.expand(data, [2, 3])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.expand_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandTripleGradCheck(unittest.TestCase):

    def expand_wrapper(self, x):
        return paddle.expand(x[0], [2, 3])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.expand(data, [2, 3])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.expand_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


364
if __name__ == "__main__":
H
hong 已提交
365
    paddle.enable_static()
366
    unittest.main()