ConvOp.h 5.2 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#pragma once

H
hedaoyuan 已提交
17 18 19 20 21
#include "Function.h"

namespace paddle {

/*
22 23 24
 * \brief Based on the ConvFunctionBase class, the forward calculation,
 *        backward input calculation and backward filter calculation
 *        of convolution operations can be implemented.
H
hedaoyuan 已提交
25
 *
26 27 28 29 30
 * Arguments of forward and backward calculation:
 *   1. Forward calculation of convolution.
 *      inputs = {INPUT, FILTER}, outputs = {OUTPUT}
 *      The first and second input arguments are input image and filter data.
 *      The output argument is output image.
H
hedaoyuan 已提交
31
 *
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 *   2. Backward input calculation of convolution.
 *      inputs = {OUTPUT_GRAD, FILTER}, outputs = {INPUT_GRAD}
 *      The first and second input arguments are output grad image
 *      and filter data.
 *      The output argument is input grad image.
 *
 *   3. Backward filter calculation of convolution.
 *      inputs = {OUTPUT_GRAD, INPUT}, outputs = {FILTER_GRAD}
 *      The first and second input arguments are output grad image
 *      and input image.
 *      The output argument is filter grad.
 *
 * Arguments format of input, filter and output:
 *   1. Input image, output image, input image gradient, output image gradient
 *      are all NCHW format. Where N is batch size, C is the number of channels,
 *      H and W is the height and width of image or image gradient.
 *
H
hedaoyuan 已提交
49 50 51 52 53 54 55
 *   2. The format of the filter data is MCHW, where M is the number of output
 *      image channels, C is the number of input image channels,
 *      H and W is height and width of filter.
 *
 *      If groups is greater than 1, the filter's data format should be GMCHW,
 *      where G is the groups, and G * M is the number of output image channels,
 *      G * C is the number of input image channels,
56
 *      H and W is height and width of filter.
H
hedaoyuan 已提交
57 58 59 60 61
 */
class ConvFunctionBase : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    // function arguments
62 63
    strides_ = config.get<std::vector<size_t>>("strides");
    paddings_ = config.get<std::vector<size_t>>("paddings");
64
    groups_ = config.get<size_t>("groups");
H
hedaoyuan 已提交
65 66 67 68 69 70 71 72

    // number of inputs and outputs
    numInputs_ = 2;
    numOutputs_ = 1;
  }

  virtual void calc(const BufferArgs& inputs, const BufferArgs& outputs) {}

73 74 75 76 77 78 79 80 81 82 83 84 85
  // input can be INPUT and INPUT_GRAD
  // filter can be FILTER and FILTER_GRAD
  // output can be OUTPUT and OUTPUT_GRAD
  void check(const TensorShape& input,
             const TensorShape& filter,
             const TensorShape& output) {
    // inputs and outputs arguments should be 4-dimensional.
    CHECK_EQ(input.ndims(), (size_t)4);
    CHECK_EQ(output.ndims(), (size_t)4);
    // The batchSize of the input needs to be equal to
    // the batchSize of the output.
    CHECK_EQ(input[0], output[0]);

H
hedaoyuan 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    if (filter.ndims() == (size_t)4) {
      // If the filter's dimension is 4, groups convolution is not supported.
      CHECK_EQ(groups_, (size_t)1);
      // The input and output channel dimensions are the second and first
      // dimensions of the filter shape.
      CHECK_EQ(input[1], filter[1]);
      CHECK_EQ(output[1], filter[0]);
    } else {
      // filter argument should be 5-dimensional.
      CHECK_EQ(filter.ndims(), (size_t)5);
      // The first dimension of the filter is the size of the group
      CHECK_EQ(filter[0], groups_);
      // The input and output channel dimensions are the third and second
      // dimensions of the filter shape.
      CHECK_EQ(input[1], filter[2] * groups_);
      CHECK_EQ(output[1], filter[1] * groups_);
    }
H
hedaoyuan 已提交
103 104 105
  }

protected:
H
hedaoyuan 已提交
106
  size_t getFilterHeight(const TensorShape& filter) const {
H
hedaoyuan 已提交
107
    return filter[filter.ndims() - 2];
H
hedaoyuan 已提交
108 109 110
  }

  size_t getFilterWidth(const TensorShape& filter) const {
H
hedaoyuan 已提交
111
    return filter[filter.ndims() - 1];
H
hedaoyuan 已提交
112 113
  }

114 115
  std::vector<size_t> strides_;
  std::vector<size_t> paddings_;
116

117 118 119 120 121
  /// Group size, refer to grouped convolution in
  /// Alex Krizhevsky's paper: when group=2, the first half of the
  /// filters are only connected to the first half of the input channels,
  /// and the second half only connected to the second half.
  size_t groups_;
122

123 124 125 126 127 128 129
  inline int strideH() const { return strides_[0]; }

  inline int strideW() const { return strides_[1]; }

  inline int paddingH() const { return paddings_[0]; }

  inline int paddingW() const { return paddings_[1]; }
130 131 132 133 134 135 136 137 138 139 140 141 142 143

  // A temporary memory in convolution calculation.
  MemoryHandlePtr memory_;

  template <DeviceType Device>
  void resizeBuffer(size_t newSize) {
    if (!memory_ || newSize * sizeof(real) > memory_->getAllocSize()) {
      if (Device == DEVICE_TYPE_CPU) {
        memory_ = std::make_shared<CpuMemoryHandle>(newSize * sizeof(real));
      } else {
        memory_ = std::make_shared<GpuMemoryHandle>(newSize * sizeof(real));
      }
    }
  }
H
hedaoyuan 已提交
144 145 146
};

}  // namespace paddle