parallel.py 44.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qizhaoaoe 已提交
15
import itertools
16
import os
17
import time
18
import warnings
Q
qizhaoaoe 已提交
19 20
from collections import OrderedDict
from contextlib import contextmanager
21
from multiprocessing import Manager  # noqa: F401
22 23
from multiprocessing import Process  # noqa: F401

Q
qizhaoaoe 已提交
24 25
import numpy as np

26
import paddle
Q
qizhaoaoe 已提交
27
from paddle import _legacy_C_ops, framework
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from paddle.distributed.collective import (
    Group,
    _default_group_name,
    _get_group_map_by_name,
    _new_process_group_impl,
    _set_default_backend,
    _set_default_store,
    _set_group_map,
    _set_group_map_backend,
    _set_group_map_by_name,
    _valid_backend_list,
)
from paddle.distributed.communication.group import _add_new_group
from paddle.distributed.fleet.base.private_helper_function import (  # noqa: F401
    wait_server_ready,
)
from paddle.distributed.fleet.launch_utils import check_backend
45

46
# (TODO: GhostScreaming) It will be removed later.
Q
qizhaoaoe 已提交
47 48
from paddle.framework import ParamBase, _set_expected_place
from paddle.framework import base as imperative_base
49 50
from paddle.framework import core, in_dygraph_mode, to_variable
from paddle.nn.layer import layers
Q
qizhaoaoe 已提交
51
from paddle.utils import deprecated
52

Q
qizhaoaoe 已提交
53
from . import parallel_helper
54

55
__all__ = []
56 57 58

ParallelStrategy = core.ParallelStrategy

Q
qizhaoaoe 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

def _build_default_parallel_strategy():
    strategy = ParallelStrategy()
    strategy.nranks = paddle.distributed.ParallelEnv().nranks
    strategy.local_rank = paddle.distributed.ParallelEnv().local_rank
    strategy.trainer_endpoints = (
        paddle.distributed.ParallelEnv().trainer_endpoints
    )
    strategy.current_endpoint = (
        paddle.distributed.ParallelEnv().current_endpoint
    )
    return strategy


def _coalesce_tensors(var_groups):
    coalesced_grads_and_grad_vars = []
    for group_id, grad_vars in var_groups.items():
        flattened_vars = []
        g_var_shapes = []
        for g_var in grad_vars:
            g_var_shapes.append(g_var.shape)
            flattened_vars.append(
                paddle.reshape(x=g_var, shape=[np.prod(g_var.shape)])
            )
        coalesced_grad = paddle.concat(flattened_vars)
        coalesced_grads_and_grad_vars.append(
            [coalesced_grad, grad_vars, g_var_shapes]
        )
    return coalesced_grads_and_grad_vars


@framework.dygraph_only
def _reshape_inplace(x, shape):
    x_shape = framework._varbase_creator(dtype=x.dtype)
    framework._dygraph_tracer().trace_op(
        type="reshape2",
        inputs={'X': x},
        outputs={'Out': x, 'XShape': x_shape},
        attrs={'shape': shape},
    )


@framework.dygraph_only
def _split_tensors(coalesced_grads_and_grad_vars):
    if in_dygraph_mode():
        for (
            coalesced_grad,
            origin_grad_vars,
            grad_shapes,
        ) in coalesced_grads_and_grad_vars:
            grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes]
            attrs = ()
            attrs += ('sections', grad_var_len)
            attrs += ('axis', 0)
            _legacy_C_ops.split(coalesced_grad, origin_grad_vars, *attrs)
            for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
                g_var.reshape_(shape=g_shape)
                assert g_var.shape == g_shape


def scale_loss(loss):
    # TODO(liuyuhui) Currently only for xpu. Will be removed in the future.
    if not paddle.distributed.ParallelEnv().world_size > 1:
        return loss

    loss_scale = to_variable(
        np.array([paddle.distributed.ParallelEnv().world_size]).astype(
            "float32"
        )
    )
    loss_scale.stop_gradient = True
    scaled_loss = loss / loss_scale
    return scaled_loss


@imperative_base.no_grad
@framework.dygraph_only
def build_groups(vars, group_size):
    group_idx = 0
    memory_counter = 0
    var_groups = OrderedDict()
    dtype = vars[0].dtype

    for var in vars:
        bytes = np.prod(var.shape) * core.size_of_dtype(var.dtype)
        if memory_counter < group_size and dtype == var.dtype:
            memory_counter += bytes
        else:
            memory_counter = bytes
            dtype = var.dtype
            group_idx += 1
        var_groups.setdefault(group_idx, []).append(var)
    return _coalesce_tensors(var_groups)


@imperative_base.no_grad
@framework.dygraph_only
def sync_params_buffers(
    model, comm_group=None, src_rank=0, is_model_parallel=False
):
    model_vars = []
    for _, param in model._obtain_parameters_buffers().items():
        if not isinstance(param, (core.VarBase, core.eager.Tensor)):
            raise TypeError(
                "The data type of '%s' must be Varbase or eager.Tensor"
                % param.name
            )

        # is_distributed param not need to sync when in mp mode
        if isinstance(param, (ParamBase, core.eager.Tensor)):
            if is_model_parallel and param.is_distributed:
                continue

            # NOTE(shenliang03): Support situations that do not require synchronization parameters,
            # such as moe's expert parameters
            if getattr(param, "no_sync", False):
                continue
        if param.type == core.VarDesc.VarType.VOCAB:
            continue

        model_vars.append(param.detach())
    if len(model_vars) == 0:
        return

    # group size is 128M
    coalesced_vars = build_groups(model_vars, 128 * 1024 * 1024)

    for coalesced_var, _, _ in coalesced_vars:
        paddle.distributed.broadcast(
            coalesced_var, src=src_rank, group=comm_group, sync_op=True
        )

    for coalesced_var, origin_vars, var_shapes in coalesced_vars:
        var_len = [np.prod(v_shape) for v_shape in var_shapes]
        paddle.fluid.framework._dygraph_tracer().trace_op(
            type='split',
            inputs={'X': coalesced_var},
            outputs={'Out': origin_vars},
            attrs={'sections': var_len, 'axis': 0},
        )


class DataParallel(layers.Layer):
    """
    Run the dygraph module with data parallelism.

    Currently, DataParallel class only supports to run the dynamic graph
    with multi-process.

    Now supports two ways to start training:

    1. start by ``paddle.distributed.spawn`` method, for example:

        ``python demo.py`` (spawn need to be called in ``__main__`` method)

    2. start by ``paddle.distributed.launch`` module, for example:

        ``python -m paddle.distributed.launch --gpus=0,1 demo.py`` .

    And the content of `demo.py` is the code of examples.

    Args:
        layers(Layer): The module that should be executed by data parallel.
        strategy(ParallelStrategy, optional): (deprecated) The strategy of data parallelism,
            contains environment configuration related to parallel execution. Default: None.
        comm_buffer_size(int, optional):  It limits the memory size(MB) of one buffer
                                          parameters' gradient which is the input of communication
                                          calling(e.g NCCLAllReduce). Default: 25.
        last_comm_buffer_size(float, optional): It limits memory size(MB) of last buffer in communication
                                         calling. Making the last communication buffer size small is useful to
                                         improve performance. Default: 1.
        find_unused_parameters(bool, optional): Whether to traverse the entire backward graph from the
                                                all tensors in the return value of the wrapped model's
                                                forward function. For parameters not involved in loss
                                                calculation, their gradients will be marked as ready in
                                                advance to prepare reduce. Please note that all forward
                                                outputs derived from the wrapped model parameters must
                                                participate in the calculation of loss and subsequent
                                                gradient calculations. If not, serious error will occur.
                                                Note that setting the find_unused_parameters to True
                                                will affect computing performance. Therefore, if all parameters
                                                are sure to participate in the loss calculation and the
                                                autograd graph construction, please set it False. Default: False.

    Returns:
        Layer: The data paralleled module.

    Examples:

        .. code-block:: python
            :name: dp-example

            # required: distributed
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super().__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)

                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
                # 1. initialize parallel environment
                dist.init_parallel_env()

                # 2. create data parallel layer & optimizer
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

                # 3. run layer
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                # 1. start by ``paddle.distributed.spawn`` (default)
                dist.spawn(train, nprocs=2)
                # 2. start by ``paddle.distributed.launch``
                # train()


    .. note::
        ``PyLayer`` is not supported in DataParallel. To solve problems of this kind,
        it's recommended to skip gradient synchronization among multiple cards by 'no_sync',
        and manually implement 'all_reduce' before model optimization. There is an example
        showing specific implemetation processing.

    Examples:

        .. code-block:: python
            :name: dp-pylayer-example

            # required: distributed
            import numpy
            import paddle
            import paddle.distributed as dist
            from paddle.autograd import PyLayer
            from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

            class cus_tanh(PyLayer):
                @staticmethod
                def forward(ctx, x):
                    y = paddle.tanh(x)
                    ctx.save_for_backward(y)
                    return y

                @staticmethod
                def backward(ctx, dy):
                    y, = ctx.saved_tensor()
                    grad = dy * (1 - paddle.square(y))
                    return grad

            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super().__init__()
                    self.linear = paddle.nn.Linear(2, 2)

                def forward(self, inputs):
                    inputs = cus_tanh.apply(inputs)
                    return self.linear(inputs)

            if __name__ == '__main__':
                dist.init_parallel_env()

                model = SimpleNet()
                model = paddle.DataParallel(model)
                opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

                for step in range(10):
                    x_data = numpy.random.randn(2, 2).astype(numpy.float32)
                    x = paddle.to_tensor(x_data)
                    x.stop_gradient = False

                    # step 1 : skip gradient synchronization by 'no_sync'
                    with model.no_sync():
                        y_pred = model(x)
                        loss = y_pred.mean()
                        loss.backward()

                    # step 2 : fuse + allreduce manually before optimization
                    fused_allreduce_gradients(list(model.parameters()), None)

                    opt.step()
                    opt.clear_grad()

    """

    def __init__(
        self,
        layers,
        strategy=None,
        comm_buffer_size=25,
        last_comm_buffer_size=1,
        find_unused_parameters=False,
        group=None,
    ):
        super().__init__(layers.full_name() + "_data_parallel")

        assert (
            in_dygraph_mode()
        ), "It's not supported to construct DataParallel in static graph mode."

        self._layers = layers
        self.find_unused_parameters = find_unused_parameters
        self.grad_need_sync = True
        self.group = group
        self.var_dtype = (
            core.eager.Tensor if in_dygraph_mode() else core.VarBase
        )

        # NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy.
        # It just stores some environment variables, which can be constructed by
        # ParallelEnv. Here it is set as an optional argument.
        # This parameter is not removed because of compatibility with 1.x writing.
        if strategy is not None:
            self._strategy = strategy
        else:
            self._strategy = _build_default_parallel_strategy()

        if self._strategy.nranks > 1:
            # check the environment
            assert parallel_helper.__parallel_ctx__clz__ is not None, (
                "ParallelContext must be initialized before. You should use init_parallel_env() before"
                "constructing the DataParallel."
            )

            if in_dygraph_mode():
                self.group = (
                    paddle.distributed.collective._get_default_group()
                    if self.group is None
                    else self.group
                )

                assert isinstance(
                    self.group, paddle.distributed.collective.Group
                ), "ProcessGroup must be an instance of Group in DataParallel."

            # sync buffer and params
            # TODO(liuyuhui) Currently not support xpu. xpu is
            # still broadcasting parameters when calling layer
            if not paddle.is_compiled_with_xpu():
                sync_params_buffers(self._layers)

            self.comm_buffer_size = int(comm_buffer_size * 1024 * 1024)
            # NOTE(shenliang03): We can set environment variables to control
            # the size of the group, Default: 1MB. The role of this small group is:
            # when the last group allreduce, the overlap cannot work. Making the
            # the last group small is useful to improve performance.
            self.last_comm_buffer_size = int(
                last_comm_buffer_size * 1024 * 1024
            )
            self.init_reducer()
        else:
            warnings.warn(
                "The program will return to single-card operation. "
                "Please check 1, whether you use spawn or fleetrun "
                "to start the program. 2, Whether it is a multi-card "
                "program. 3, Is the current environment multi-card."
            )

    def init_reducer(self):
        layers_param = []
        params_set = set()
        for sublayer in self.sublayers():
            for _, param in sublayer.named_parameters(include_sublayers=False):
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                if not isinstance(param, self.var_dtype):
                    raise TypeError(
                        "The data type of '%s' must be '%s'"
                        % (param.name, self.var_dtype)
                    )
                if param.trainable:
                    layers_param.append((sublayer, param))

        trainable_parameters = list(
            filter(
                lambda x: not getattr(x, "no_sync", False),
                [param for _, param in layers_param],
            )
        )

        assert len(trainable_parameters) > 0, (
            "This model does not have any parameters to train, and "
            "does not need to use DataParallel"
        )

        # NOTE(shenliang03): Here we can only use the attributes to judge whether
        # parameter is sparse(or SelectedRows). The reason is that the sparse message
        # can't be obtained when bp hasn't happened yet. So if layer supports sparse parameter,
        # we should add the layer here like "paddle.nn.layer.common.Embedding".
        def check_layer_sparse(sublayer):
            if isinstance(sublayer, paddle.nn.layer.common.Embedding):
                return sublayer._sparse
            return False

        is_sparse_gradient = [
            check_layer_sparse(sublayer) for sublayer, _ in layers_param
        ]

        if in_dygraph_mode():
            self.group_indices = core.eager_assign_group_by_size(
                trainable_parameters,
                is_sparse_gradient,
                [self.last_comm_buffer_size, self.comm_buffer_size],
            )

            self._reducer = core.EagerReducer(
                trainable_parameters,
                list(reversed(self.group_indices)),
                is_sparse_gradient,
                self.group.process_group,
                [self.last_comm_buffer_size, self.comm_buffer_size],
                self.find_unused_parameters,
            )

    def _find_varbase(self, obj):
        var_type = core.eager.Tensor if in_dygraph_mode() else core.VarBase
        if isinstance(obj, var_type):
            return [obj]
        if isinstance(obj, (list, tuple)):
            return itertools.chain(*map(self._find_varbase, obj))
        if isinstance(obj, dict):
            return itertools.chain(*map(self._find_varbase, obj.values()))
        return []

    @contextmanager
    def no_sync(self):
        """
        A context manager to stop gradient synchronization. Within no_sync(),
        gradients of parameters will only be accumulated on model and not
        synchronized util the first forward-backward out of this context.

        Examples:
            .. code-block:: python

                # required: distributed
                import paddle
                import paddle.nn as nn
                import paddle.distributed as dist

                class SimpleNet(nn.Layer):
                    def __init__(self):
                        super().__init__()
                        self._linear = nn.Linear(10, 1)

                    def forward(self, x):
                        return self._linear(x)

                dist.init_parallel_env()
                model = SimpleNet()
                dp_model = paddle.DataParallel(model)

                inputs_1 = paddle.randn([10, 10], 'float32')
                inputs_2 = paddle.ones([10, 10], 'float32')

                with dp_model.no_sync():
                    # gradients will not be synchronized
                    dp_model(inputs_1).backward()

                # synchronization happens here
                dp_model(inputs_2).backward()

        """
        tmp_grad_need_sync = self.grad_need_sync
        self.grad_need_sync = False
        try:
            yield
        finally:
            self.grad_need_sync = tmp_grad_need_sync

    def forward(self, *inputs, **kwargs):
        outputs = self._layers(*inputs, **kwargs)
        if (
            self._strategy.nranks > 1
            and framework._dygraph_tracer()._has_grad
            and self.grad_need_sync
        ):
            self._reducer.prepare_for_backward(
                list(self._find_varbase(outputs))
            )
        return outputs

    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore."
    )
    def scale_loss(self, loss):
        """
        Deprecated method, now ``scale_loss`` is an empty method,
        keep this method just for compatibility.
        """
        return loss

    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore."
    )
    def apply_collective_grads(self):
        """
        Deprecated method, now ``apply_collective_grads`` is an empty method,
        keep this method just for compatibility.
        """
        return

    def state_dict(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
    ):
        '''
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True

        Retruns:
            dict: a dict contains all the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.distributed as dist

                dist.init_parallel_env()

                emb = paddle.nn.Embedding(10, 10)
                emb = paddle.DataParallel(emb)

                state_dict = emb.state_dict()
                paddle.save(state_dict, "paddle_dy.pdparams")

        '''

        return self._layers.state_dict(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
        )

    @framework.deprecate_stat_dict
    def set_state_dict(self, state_dict, use_structured_name=True):
        '''
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict

        Parameters:
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
                                                  Default: True
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.distributed as dist

                dist.init_parallel_env()

                emb = paddle.nn.Embedding(10, 10)
                emb = paddle.DataParallel(emb)

                state_dict = emb.state_dict()
                paddle.save(state_dict, "paddle_dy.pdparams")

                para_state_dict = paddle.load("paddle_dy.pdparams")
                emb.set_state_dict(para_state_dict)

        '''

        self._layers.set_state_dict(
            state_dict, use_structured_name=use_structured_name
        )

    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict


657
# NOTE(chenweihang): Maintain a global parallel env to avoid
658 659 660 661
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
class ParallelEnv:
    """
    .. note::
        This API is not recommended, if you need to get rank and world_size,
        it is recommended to use ``paddle.distributed.get_rank()`` and
        ``paddle.distributed.get_world_size()`` .

    This class is used to obtain the environment variables required for
    the parallel execution of ``paddle.nn.Layer`` in dynamic mode.

    The parallel execution in dynamic mode needs to be started using ``paddle.distributed.launch``
    or ``paddle.distributed.spawn`` .

    Examples:
      .. code-block:: python

        import paddle
        import paddle.distributed as dist

        def train():
            # 1. initialize parallel environment
            dist.init_parallel_env()

            # 2. get current ParallelEnv
            parallel_env = dist.ParallelEnv()
            print("rank: ", parallel_env.rank)
            print("world_size: ", parallel_env.world_size)

            # print result in process 1:
            # rank: 1
            # world_size: 2
            # print result in process 2:
            # rank: 2
            # world_size: 2

        if __name__ == '__main__':
            # 1. start by ``paddle.distributed.spawn`` (default)
            dist.spawn(train, nprocs=2)
            # 2. start by ``paddle.distributed.launch``
            # train()
    """

    def __init__(self):
        self._rank = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._world_size = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
        self._device_type = str(os.getenv("PADDLE_XCCL_BACKEND", ""))

        # imperative only support one gpu or xpu
        if self._device_type != "":
            FLAGS_selected_custom_devices = 'FLAGS_selected_{}s'.format(
                self._device_type
            )
            selected_custom_devices = os.getenv(
                FLAGS_selected_custom_devices, "0"
            ).split(",")
            self._device_id = int(selected_custom_devices[0])
        else:
            if core.is_compiled_with_cuda():
                selected_gpus = os.getenv("FLAGS_selected_gpus", "0").split(",")
                self._device_id = int(selected_gpus[0])
            elif core.is_compiled_with_xpu():
                selected_xpus = os.getenv("FLAGS_selected_xpus", "0").split(",")
                self._device_id = int(selected_xpus[0])
            elif core.is_compiled_with_npu():
                selected_npus = os.getenv("FLAGS_selected_npus", "0").split(",")
                self._device_id = int(selected_npus[0])
            elif core.is_compiled_with_mlu():
                selected_mlus = os.getenv("FLAGS_selected_mlus", "0").split(",")
                self._device_id = int(selected_mlus[0])

        self._trainer_endpoints = os.getenv(
            "PADDLE_TRAINER_ENDPOINTS", ""
        ).split(",")
        self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "")
        self._nrings = int(os.getenv("FLAGS_nccl_nrings", "1"))
        assert (
            self._nrings > 0
        ), "nccl_nrings must be an integer greater than 0."
        assert (
            self._nrings < 9
        ), "nccl_nrings should be less than 9, which is enough in most scenarios."

    @property
    def rank(self):
        """
        Rank of current trainer.

        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . The default value is 0.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The rank is %d" % env.rank)
            # The rank is 0
        """
        return self._rank

    @property
    def world_size(self):
        """
        The number of trainers (number of processes participating in current job).

        Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . The default value is 1.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The world_size is %d" % env.world_size)
            # The world_size is 4
        """
        return self._world_size

    @property
    def device_id(self):
        """
        The ID of selected GPU card for parallel training.

        Its value is equal to the value of the environment variable ``FLAGS_selected_gpus`` . The default value is 0.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_selected_gpus=1
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The device id are %d" % env.device_id)
            # The device id are 1
        """
        return self._device_id

    @property
    def device_type(self):
        """
        The type of custom device for parallel training.

        Its value is equal to the value of the environment variable ``PADDLE_XCCL_BACKEND`` . The default value is None.

        """
        return self._device_type

    @property
    def current_endpoint(self):
        """
        The endpoint of current trainer, it is in the form of (node IP + port).

        Its value is equal to the value of the environment variable ``PADDLE_CURRENT_ENDPOINT`` . The default value is "".

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_CURRENT_ENDPOINT=127.0.0.1:6170
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The current endpoint are %s" % env.current_endpoint)
            # The current endpoint are 127.0.0.1:6170
        """
        return self._current_endpoint

    @property
    def trainer_endpoints(self):
        """
        The endpoints of all trainer nodes in the task,
        which are used to broadcast the NCCL ID when NCCL2 is initialized.

        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ENDPOINTS`` . The default value is "".

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINER_ENDPOINTS=127.0.0.1:6170,127.0.0.1:6171
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The trainer endpoints are %s" % env.trainer_endpoints)
            # The trainer endpoints are ['127.0.0.1:6170', '127.0.0.1:6171']
        """
        return self._trainer_endpoints

    @property
    def nrings(self):
        """
        Nrings of current trainer.

        Its value is equal to the value of the environment variable ``FLAGS_nccl_nrings`` . The default value is 1.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_nccl_nrings=1
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The nrings is %d" % env.nrings)
            # the number of ring is 1
        """
        return self._nrings

    # [aliases] Compatible with old method names
    local_rank = rank
    nranks = world_size
    dev_id = device_id


875 876 877 878 879 880
def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

881

882
def _start_kv_server(port, http_server_d, size):
883
    from paddle.distributed.fleet.utils.http_server import KVServer
884

885
    http_server = KVServer(int(port), size=size)
886
    http_server.start()
887
    wait_seconds = 3
L
lilong12 已提交
888
    while http_server_d.get("running", False) or not http_server.should_stop():
889 890 891 892
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
893 894
def _is_cpuonly(backend):
    check_backend(backend)
895 896 897 898 899 900 901 902 903
    if (
        backend in ['auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl']
        and (
            core.is_compiled_with_cuda()
            or core.is_compiled_with_xpu()
            or core.is_compiled_with_npu()
            or core.is_compiled_with_mlu()
        )
    ) or backend == 'xccl':
904

905 906 907 908 909 910
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


K
kuizhiqing 已提交
911 912 913
def _check_var_exists(var_name):
    var = os.environ.get(var_name, None)
    if var is None:
914 915 916 917
        raise ValueError(
            "paddle.distributed initialize error, "
            "environment variable %s is needed, but not set." % var_name
        )
K
kuizhiqing 已提交
918 919


X
xiongkun 已提交
920
def init_parallel_env():
921
    """
922

923
    Initialize parallel training environment in dynamic graph mode.
924

925
    Note:
926
        Now initialize both `NCCL` and `GLOO` contexts for communication.
927

928 929 930 931 932
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

933 934
    Returns:
        None
935

936 937
    Examples:
        .. code-block:: python
938

939
            # required: gpu
940 941 942 943 944 945 946
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
947
                    super().__init__()
948 949
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
950

951 952 953 954
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
955
                # 1. initialize parallel environment
956 957
                dist.init_parallel_env()

958
                # 2. create data parallel layer & optimizer
959 960 961 962 963 964 965
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

966
                # 3. run layer
967 968 969 970
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
971

972 973 974 975 976 977 978
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
979

980 981
    """

982 983 984 985 986 987 988 989 990 991 992
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
993
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to
994
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
995 996
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
997
    # 1. gpu xpu check, must be gpu or xpu,
998 999 1000 1001 1002 1003
    if not (
        is_cpu_only
        or core.is_compiled_with_cuda()
        or core.is_compiled_with_xpu()
        or core.is_compiled_with_npu()
        or core.is_compiled_with_mlu()
S
shentanyue 已提交
1004
        or backend == "xccl"
1005
    ):
1006
        raise NotImplementedError(
1007 1008
            "If you want to use CPU-only version, please use 'gloo' as backend"
        )
1009

1010 1011
    if backend == "xccl":
        FLAGS_selected_custom_devices = 'FLAGS_selected_{}s'.format(
1012 1013
            parallel_env.device_type
        )
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
        _check_var_exists(FLAGS_selected_custom_devices)
    else:
        if not is_cpu_only and core.is_compiled_with_cuda():
            _check_var_exists("FLAGS_selected_gpus")
            backend = "nccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_xpu():
            _check_var_exists('FLAGS_selected_xpus')
            backend = "bkcl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_npu():
            _check_var_exists('FLAGS_selected_npus')
            backend = "hccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_mlu():
            _check_var_exists('FLAGS_selected_mlus')
            backend = "cncl" if backend == "auto" else backend
1028

1029 1030 1031 1032 1033
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

1034 1035 1036 1037 1038 1039
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode,
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
1040
    if backend == "xccl":
1041 1042 1043
        place = core.CustomPlace(
            parallel_env.device_type, parallel_env.device_id
        )
1044
    elif is_cpu_only:
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_npu():
        place = core.NPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_mlu():
        place = core.MLUPlace(parallel_env.device_id)

    _set_expected_place(place)

    group = None
1058

L
lilong12 已提交
1059 1060 1061 1062
    if backend in _valid_backend_list and in_dygraph_mode():
        if _default_group_name in _get_group_map_by_name():
            return _get_group_map_by_name()[_default_group_name]
        _set_default_backend(backend)
1063 1064 1065 1066 1067
        rank = int(os.getenv("PADDLE_TRAINER_ID"))
        world_size = int(os.getenv("PADDLE_TRAINERS_NUM"))
        assert rank >= 0 and world_size > rank and world_size > 1, (
            "rank must be non-negative and world_size must be the "
            "maximum rank plus one. Moreover, at least two processes are "
1068 1069
            "required to create a process group."
        )
1070 1071
        master_addr = os.getenv("MASTER_ADDR", None)
        master_port = os.getenv("MASTER_PORT", None)
1072 1073 1074 1075 1076
        endpoints = (
            ":".join([master_addr, master_port])
            if master_addr and master_port
            else None
        )
1077
        if endpoints is None:
1078 1079 1080 1081 1082 1083 1084
            endpoints = os.getenv("PADDLE_MASTER", None)
        if endpoints is None:
            endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS").split(',')[0]
        assert endpoints, (
            "The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
            "must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
            "and 'export MASTER_ADDR=54612'. Or you can start your training"
1085 1086
            "with paddle.distributed.run module."
        )
1087 1088 1089
        master_addr, master_port = endpoints.split(":")
        master_port = int(master_port)
        is_master = rank == 0
1090
        stop_check_timeout = int(os.getenv("FLAGS_stop_check_timeout", "900"))
1091 1092 1093 1094 1095 1096 1097
        default_store = core.TCPStore(
            master_addr,
            master_port,
            is_master,
            world_size,
            timeout=stop_check_timeout,
        )
L
lilong12 已提交
1098
        _set_default_store(default_store)
1099 1100 1101 1102 1103 1104 1105 1106
        pg = _new_process_group_impl(
            backend,
            default_store,
            rank,
            world_size,
            _default_group_name,
            pg_options=None,
        )
1107
        ranks = list(range(world_size))
1108
        group = Group(rank, 0, ranks, pg=pg, name=_default_group_name)
L
lilong12 已提交
1109 1110
        _set_group_map_by_name(_default_group_name, group)
        _set_group_map(0, group)
1111
        _set_group_map_backend(group, backend)
1112
        _add_new_group(group)
1113
        parallel_helper._set_parallel_ctx(True)
1114 1115

        paddle.distributed.barrier(group=group)
1116 1117
        return group

K
kuizhiqing 已提交
1118
    node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints])
1119
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
1120
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
K
kuizhiqing 已提交
1121
    if is_cpu_only or init_gloo or backend == "heter":
L
lilong12 已提交
1122 1123 1124 1125 1126 1127 1128 1129
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
K
kuizhiqing 已提交
1130 1131
            if backend == "heter":
                size = {'_worker': len(node_num)}
1132 1133 1134 1135
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size),
            )
L
lilong12 已提交
1136 1137 1138
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
1139 1140

    # 4. init NCCL ParallelStrategy
1141
    strategy = ParallelStrategy()
1142 1143
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
1144 1145 1146 1147
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
1148
    strategy.nrings = parallel_env.nrings
1149

K
kuizhiqing 已提交
1150
    # init nccl or hccl or bkcl or heter context
1151 1152
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
1153 1154 1155
            core.GLOOParallelContext(strategy, place)
        )
    elif backend == "heter":
K
kuizhiqing 已提交
1156
        parallel_helper._set_parallel_ctx(
1157 1158
            core.HeterParallelContext(strategy, parallel_env.device_id)
        )
1159
    elif core.is_compiled_with_cuda():
1160
        parallel_helper._set_parallel_ctx(
1161 1162
            core.NCCLParallelContext(strategy, place)
        )
1163 1164
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
1165 1166
            core.BKCLParallelContext(strategy, place)
        )
1167 1168
    elif core.is_compiled_with_npu():
        parallel_helper._set_parallel_ctx(
1169 1170
            core.HCCLParallelContext(strategy, place)
        )
1171 1172
    elif core.is_compiled_with_mlu():
        parallel_helper._set_parallel_ctx(
1173 1174
            core.CNCLParallelContext(strategy, place)
        )
1175

K
kuizhiqing 已提交
1176 1177 1178 1179 1180
    if backend != "heter":
        other_endpoints = strategy.trainer_endpoints[:]
        other_endpoints.remove(strategy.current_endpoint)
        if not is_cpu_only and strategy.local_rank == 0:
            wait_server_ready(other_endpoints)
1181

1182
    parallel_helper._init_parallel_ctx()
K
kuizhiqing 已提交
1183

1184 1185 1186 1187
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
K
kuizhiqing 已提交
1188
    if (is_cpu_only or backend == "heter") and parallel_env.rank == 0:
1189
        # compare to init_gloo, we don't need to
1190 1191 1192
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
1193

1194 1195
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
1210
    return group
1211

1212

L
LiYuRio 已提交
1213
def get_rank(group=None):
1214
    """
L
LiYuRio 已提交
1215 1216
    Returns the rank of current trainer in the given group, ranks are consecutive integers in [0, ``world_size``).
    If none of the group is given, the global group will be used as default.
1217

L
LiYuRio 已提交
1218 1219
    Args:
        group (Group, optional): The communication group you want to get rank of current trainer, use global group as default if group is None.
1220 1221

    Returns:
L
LiYuRio 已提交
1222 1223 1224 1225
        (int) The rank of current trainer in the given group. Return -1 if the process is not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
1226 1227 1228 1229

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
1230
            # Execute this script using distributed launch with one card configs.
1231 1232 1233
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
1234
            dist.init_parallel_env()
1235 1236 1237
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
L
LiYuRio 已提交
1238 1239 1240 1241
    if in_dygraph_mode() and group:
        return group.rank

    assert group is None, "Only support group argument in eager mode."
1242
    return _get_global_parallel_env().rank
1243 1244


L
LiYuRio 已提交
1245
def get_world_size(group=None):
1246
    """
L
LiYuRio 已提交
1247 1248
    Returns the number of trainers (number of processes participating in current job) in the given group.
    If none of the group is given, the global group will be used as default.
1249

L
LiYuRio 已提交
1250 1251
    Args:
        group (Group, optional): The communication group you want to check world size, use global group as default if group is None.
1252 1253

    Returns:
L
LiYuRio 已提交
1254 1255 1256 1257
        (int) The number of trainers in the given group. Return -1 if the process if not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
1258 1259 1260 1261

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
1262
            # Execute this script using distributed launch with one card configs.
1263 1264 1265
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
1266
            dist.init_parallel_env()
1267
            print("The world_size is %d" % dist.get_world_size())
L
LiYuRio 已提交
1268
            # The world_size is 1
1269
    """
L
LiYuRio 已提交
1270 1271 1272 1273
    if in_dygraph_mode() and group:
        return group.world_size

    assert group is None, "Only support group argument in eager mode."
1274
    return _get_global_parallel_env().world_size