softplus_mkldnn_op.h 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#pragma once
16 17 18 19 20 21 22 23 24 25 26
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename T>
class SoftplusMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
 public:
27
  SoftplusMKLDNNHandler(const framework::ExecutionContext& ctx, const Tensor* x,
28
                        const float beta, const dnnl::engine engine)
29 30
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine,
                                                           ctx.GetPlace()) {
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    auto x_tz = framework::vectorize(x->dims());
    auto x_md =
        dnnl::memory::desc(x_tz, platform::MKLDNNGetDataType<T>(), x->format());

    auto beta_tz = std::vector<int64_t>(x_tz.size(), 1);
    auto beta_md = dnnl::memory::desc(beta_tz, platform::MKLDNNGetDataType<T>(),
                                      x->format());

    dnnl::post_ops post_ops;
    post_ops.append_eltwise(1.0f, dnnl::algorithm::eltwise_soft_relu, 0.0f,
                            0.0f);
    if (beta != 1.0f) {
      post_ops.append_eltwise(1.0f, dnnl::algorithm::eltwise_linear,
                              1.0f / beta, 0.0f);
    }

47
    AppendFusedActivationIfExists(ctx, &post_ops);
48

49 50 51 52 53 54 55
    dnnl::primitive_attr attrs;
    attrs.set_post_ops(post_ops);

    this->AcquireForwardPrimitiveDescriptor(attrs, dnnl::algorithm::binary_mul,
                                            x_md, beta_md, x_md);
  }

56
  std::shared_ptr<dnnl::memory> AcquireBetaMemory(const float* beta) {
57 58 59
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->src1_desc(), platform::to_void_cast<float>(beta));
  }
60 61 62

 private:
  void AppendFusedActivationIfExists(const framework::ExecutionContext& ctx,
63
                                     dnnl::post_ops* post_ops) {
64 65 66 67 68 69
    const auto& fused_activation_type =
        algo_map.find(ctx.Attr<std::string>("fuse_activation_type"));

    if (fused_activation_type != algo_map.end()) {
      auto scale_out =
          ctx.Attr<float>("fuse_activation_scale");  // for future int8 support
70 71 72
      post_ops->append_eltwise(scale_out, fused_activation_type->second,
                               ctx.Attr<float>("fuse_activation_alpha"),
                               ctx.Attr<float>("fuse_activation_beta"));
73 74 75 76
    }
  }

  static const std::unordered_map<std::string, dnnl::algorithm> algo_map;
77 78
};

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
template <typename T>
const std::unordered_map<std::string, dnnl::algorithm>
    SoftplusMKLDNNHandler<T>::algo_map = {
        {"relu", dnnl::algorithm::eltwise_relu},
        {"tanh", dnnl::algorithm::eltwise_tanh},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"hardswish", dnnl::algorithm::eltwise_hardswish},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic}};

95 96 97 98 99 100 101 102 103 104 105 106 107
template <typename T>
void custom_softplus_eltwise_forward(const framework::ExecutionContext& ctx) {
  const auto& dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto& mkldnn_engine = dev_ctx.GetEngine();

  const auto* x = ctx.Input<Tensor>("X");
  auto* out = ctx.Output<Tensor>("Out");

  bool is_inplaced = x->IsSharedBufferWith(*out);

  const float beta = ctx.Attr<float>("beta");

108
  SoftplusMKLDNNHandler<T> handler(ctx, x, beta, mkldnn_engine);
109 110 111 112

  auto src_memory_p = handler.AcquireSrcMemory(x);

  auto beta_memory_p = handler.AcquireBetaMemory(&beta);
113 114 115 116 117 118 119
  std::shared_ptr<dnnl::memory> dst_memory_p = nullptr;
  if (is_inplaced) {
    dst_memory_p = src_memory_p;
    out->mutable_data<T>(ctx.GetPlace());
  } else {
    dst_memory_p = handler.AcquireDstMemory(out);
  }
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  auto binary_p = handler.AcquireForwardPrimitive();

  auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

  const std::unordered_map<int, dnnl::memory> args = {
      {DNNL_ARG_SRC_0, *src_memory_p},
      {DNNL_ARG_SRC_1, *beta_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  binary_p->execute(astream, args);
  astream.wait();

  out->set_layout(framework::DataLayout::kMKLDNN);
  out->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
}
}  // namespace operators
}  // namespace paddle