details.h 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

#include <math.h>
#include <vector>

#include "paddle/fluid/primitive/primitive/primitive.h"
#include "paddle/fluid/primitive/type/lazy_tensor.h"
#include "paddle/fluid/primitive/utils/utils.h"

namespace paddle {
namespace primitive {
namespace details {

template <typename T>
void divide_grad(const Tensor& x,
                 const Tensor& y,
                 const Tensor& out,
                 const Tensor& out_grad,
                 int axis,
                 Tensor* dx,
                 Tensor* dy) {
  if (dy) {
    // dy = -(x/y^2) * dout
42
    auto dy_res = -(x / y.pow(2.0)) * out_grad;
43 44 45 46 47 48 49 50
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, dy);
      } else {
        auto dy_reduce_res =
            sum<T>(dy_res, phi::vectorize(reduce_dim), y.dtype(), false);
51
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
52 53 54 55 56 57 58 59 60
        set_output<T>(dy_tmp, dy);
      }
    } else {
      set_output<T>(dy_res, dy);
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = (1/y) * dout
    auto one_tensor = full<T>(phi::vectorize(y.dims()), 1.0, y.dtype());
61
    auto dx_res = one_tensor / y * out_grad;
62 63 64 65 66 67 68 69
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, dx);
      } else {
        auto dx_reduce_res =
            sum<T>(dx_res, phi::vectorize(reduce_dim), x.dtype(), false);
70
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        set_output<T>(dx_tmp, dx);
      }

    } else {
      set_output<T>(dx_res, dx);
    }
  }  // indicate we will compute dx
}

template <typename T>
void sum_grad(const Tensor& x,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
  if (x_dim_size == 1) {
    x_grad_tmp = expand<T>(out_grad, IntArray(x_dim));
  } else {
    if (!keepdim) {
      auto axis_ = std::vector<int64_t>();
      if (reduce_all) {
        for (int64_t i = 0; i < x_dim_size; i++) {
          axis_.push_back(i);
        }
      } else {
        axis_ = axis.GetData();
        for (int64_t i = 0; i < axis_size; i++) {
          if (axis[i] < 0) {
            axis_[i] = axis[i] + x_dim_size;
          }
        }
      }
      auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
118 119
      auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
      x_grad_tmp = expand<T>(out_grad_, IntArray(x_dim));
120 121 122 123 124 125 126 127
    } else {
      x_grad_tmp = expand<T>(out_grad, IntArray(x_dim));
    }
  }

  set_output<T>(x_grad_tmp, x_grad);
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
template <typename T>
void gelu_grad(const Tensor& x,
               const Tensor& out_grad,
               bool approximate,
               Tensor* x_grad) {
  if (!x_grad) return;
  // Promote to fp32 when the input type is fp16 for keeping consistent with
  // phi kernel

  // Scale only support fp32 attr in static graph mode, use elementwise_xx
  // when precision is over fp32.
  if (approximate) {
    auto kBeta = M_SQRT2 * M_2_SQRTPI * 0.5;
    auto kKappa = 0.044715;
    auto x_sq = x * x;
    auto x_cube = x_sq * x;
    auto inner = kBeta * (x + kKappa * x_cube);
    auto tanh_inner = tanh<T>(inner);

    auto left = scale<T>(x, 0.5);
    auto right = scale<T>(tanh_inner, 1., 1.);

    auto left_derivative = scale<T>(right, 0.5);

    auto tanh_derivative = scale<T>(tanh_inner * tanh_inner, -1., 1.);
    auto inner_derivative = kBeta * (scale<T>(3 * kKappa * x_sq, 1., 1.));
    auto right_derivative = left * tanh_derivative * inner_derivative;

    set_output<T>(out_grad * (left_derivative + right_derivative), x_grad);
  } else {
    auto kAlpha = M_SQRT1_2;
    auto kBeta = M_2_SQRTPI * M_SQRT1_2 * 0.5;
    auto cdf = scale<T>(scale<T>(erf<T>(kAlpha * x), 1., 1.), 0.5);
    auto pdf = kBeta * exp<T>(scale<T>(x * x, -0.5));
    set_output<T>(out_grad * (cdf + x * pdf), x_grad);
  }
}

166 167 168
}  // namespace details
}  // namespace primitive
}  // namespace paddle