// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #ifndef _USE_MATH_DEFINES #define _USE_MATH_DEFINES #endif #include #include #include "paddle/fluid/primitive/primitive/primitive.h" #include "paddle/fluid/primitive/type/lazy_tensor.h" #include "paddle/fluid/primitive/utils/utils.h" namespace paddle { namespace primitive { namespace details { template void divide_grad(const Tensor& x, const Tensor& y, const Tensor& out, const Tensor& out_grad, int axis, Tensor* dx, Tensor* dy) { if (dy) { // dy = -(x/y^2) * dout auto dy_res = -(x / y.pow(2.0)) * out_grad; if (x.dims() != y.dims()) { // Maybe need reduce here phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims()); if (!reduce_dim.size()) { set_output(dy_res, dy); } else { auto dy_reduce_res = sum(dy_res, phi::vectorize(reduce_dim), y.dtype(), false); auto dy_tmp = reshape(dy_reduce_res, phi::vectorize(y.dims())); set_output(dy_tmp, dy); } } else { set_output(dy_res, dy); } } // indicate we will compute dy if (dx) { // dx = (1/y) * dout auto one_tensor = full(phi::vectorize(y.dims()), 1.0, y.dtype()); auto dx_res = one_tensor / y * out_grad; if (y.dims() != x.dims()) { // Maybe need reduce here auto reduce_dim = get_reduce_dims(x.dims(), y.dims()); if (!reduce_dim.size()) { set_output(dx_res, dx); } else { auto dx_reduce_res = sum(dx_res, phi::vectorize(reduce_dim), x.dtype(), false); auto dx_tmp = reshape(dx_reduce_res, phi::vectorize(x.dims())); set_output(dx_tmp, dx); } } else { set_output(dx_res, dx); } } // indicate we will compute dx } template void sum_grad(const Tensor& x, const Tensor& out_grad, const IntArray& axis, bool keepdim, bool reduce_all, Tensor* x_grad) { if (!x_grad) { return; } std::vector x_dim = phi::vectorize(x.dims()); int64_t axis_size = axis.size(); int64_t x_dim_size = x_dim.size(); reduce_all = false; if (reduce_all || axis_size == 0 || axis_size == x_dim_size) { reduce_all = true; } else { reduce_all = false; } auto x_grad_tmp = Tensor(); if (x_dim_size == 1) { x_grad_tmp = expand(out_grad, IntArray(x_dim)); } else { if (!keepdim) { auto axis_ = std::vector(); if (reduce_all) { for (int64_t i = 0; i < x_dim_size; i++) { axis_.push_back(i); } } else { axis_ = axis.GetData(); for (int64_t i = 0; i < axis_size; i++) { if (axis[i] < 0) { axis_[i] = axis[i] + x_dim_size; } } } auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_); auto out_grad_ = reshape(out_grad, out_grad_shape); x_grad_tmp = expand(out_grad_, IntArray(x_dim)); } else { x_grad_tmp = expand(out_grad, IntArray(x_dim)); } } set_output(x_grad_tmp, x_grad); } template void gelu_grad(const Tensor& x, const Tensor& out_grad, bool approximate, Tensor* x_grad) { if (!x_grad) return; // Promote to fp32 when the input type is fp16 for keeping consistent with // phi kernel // Scale only support fp32 attr in static graph mode, use elementwise_xx // when precision is over fp32. if (approximate) { auto kBeta = M_SQRT2 * M_2_SQRTPI * 0.5; auto kKappa = 0.044715; auto x_sq = x * x; auto x_cube = x_sq * x; auto inner = kBeta * (x + kKappa * x_cube); auto tanh_inner = tanh(inner); auto left = scale(x, 0.5); auto right = scale(tanh_inner, 1., 1.); auto left_derivative = scale(right, 0.5); auto tanh_derivative = scale(tanh_inner * tanh_inner, -1., 1.); auto inner_derivative = kBeta * (scale(3 * kKappa * x_sq, 1., 1.)); auto right_derivative = left * tanh_derivative * inner_derivative; set_output(out_grad * (left_derivative + right_derivative), x_grad); } else { auto kAlpha = M_SQRT1_2; auto kBeta = M_2_SQRTPI * M_SQRT1_2 * 0.5; auto cdf = scale(scale(erf(kAlpha * x), 1., 1.), 0.5); auto pdf = kBeta * exp(scale(x * x, -0.5)); set_output(out_grad * (cdf + x * pdf), x_grad); } } } // namespace details } // namespace primitive } // namespace paddle