tensor_utils.cc 10.1 KB
Newer Older
石晓伟 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/lite/tensor_utils.h"
W
Wilber 已提交
16
#include <functional>
石晓伟 已提交
17
#include <map>
18
#include <memory>
石晓伟 已提交
19 20
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/inference/lite/engine.h"
21
#include "paddle/fluid/memory/allocation/allocator.h"
石晓伟 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

namespace paddle {
namespace inference {
namespace lite {
namespace utils {

using paddle::lite_api::TargetType;
using paddle::lite_api::PrecisionType;
using paddle::lite_api::DataLayoutType;

template <typename DstLoD, typename SrcLoD>
void SetLoD(DstLoD* dst, const SrcLoD& src) {
  dst->reserve(src.size());
  dst->clear();
  for (auto&& v : src) {
    dst->emplace_back(v);
  }
}
template void SetLoD<paddle::lite::LoD, framework::LoD>(
    paddle::lite::LoD* dst, const framework::LoD& src);
template void SetLoD<framework::LoD, paddle::lite::LoD>(
    framework::LoD* dst, const paddle::lite::LoD& src);

platform::Place GetNativePlace(const TargetType& type, int id = 0) {
  switch (type) {
    case TargetType::kHost:
    case TargetType::kX86:
      return platform::CPUPlace();
    case TargetType::kCUDA:
      return platform::CUDAPlace(id);
52 53 54
    case TargetType::kXPU:
      LOG(ERROR) << "No corresponding device for XPU yet.";
      return platform::Place();
石晓伟 已提交
55
    default:
56 57 58
      PADDLE_THROW(
          platform::errors::Unavailable("Unsupported target type. Now only "
                                        "supports Host, x86, CUDA target."));
石晓伟 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
      return platform::Place();
  }
}

TargetType GetLiteTargetType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return TargetType::kHost;
  }
  return TargetType::kCUDA;
}

PrecisionType GetLitePrecisionType(framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType_Type_FP32:
      return PrecisionType::kFloat;
    case framework::proto::VarType_Type_INT8:
      return PrecisionType::kInt8;
    case framework::proto::VarType_Type_INT32:
      return PrecisionType::kInt32;
    case framework::proto::VarType_Type_INT64:
      return PrecisionType::kInt64;
    default:
81 82 83
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported precision type. Now only supports FP32, INT8, INT32 and "
          "INT64."));
石晓伟 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
      return PrecisionType::kUnk;
  }
}

framework::proto::VarType::Type GetNativePrecisionType(
    const PrecisionType& type) {
  switch (type) {
    case PrecisionType::kFloat:
      return framework::proto::VarType_Type_FP32;
    case PrecisionType::kInt8:
      return framework::proto::VarType_Type_INT8;
    case PrecisionType::kInt32:
      return framework::proto::VarType_Type_INT32;
    case PrecisionType::kInt64:
      return framework::proto::VarType_Type_INT64;
    default:
100 101 102
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported precision type. Now only supports FP32, INT8, INT32 and "
          "INT64."));
石晓伟 已提交
103 104 105 106 107 108 109 110 111
      return static_cast<framework::proto::VarType::Type>(-1);
  }
}

framework::DataLayout GetNativeLayoutType(const DataLayoutType& type) {
  switch (type) {
    case DataLayoutType::kNCHW:
      return framework::DataLayout::kNCHW;
    default:
112 113
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported layout type. Now only supports NCHW."));
石晓伟 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127
      return static_cast<framework::DataLayout>(-1);
  }
}

void MemoryCopyAsync(const platform::Place& dst_place, void* dst_data,
                     const platform::Place& src_place, const void* src_data,
                     const size_t size, const platform::DeviceContext& ctx) {
  const platform::CPUPlace cpu_place;
  if (platform::is_cpu_place(dst_place) && platform::is_cpu_place(src_place)) {
    memory::Copy(cpu_place, dst_data, cpu_place, src_data, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    if (platform::is_cpu_place(dst_place) &&
        platform::is_gpu_place(src_place)) {
128 129
      PADDLE_THROW(platform::errors::Unimplemented(
          "Lite::MemoryCopy GPU->CPU is not yet implemented."));
石晓伟 已提交
130 131
    } else if (platform::is_gpu_place(dst_place) &&
               platform::is_cpu_place(src_place)) {
132 133
      PADDLE_THROW(platform::errors::Unimplemented(
          "Lite::MemoryCopy CPU->GPU is not yet implemented."));
石晓伟 已提交
134 135
    } else if (platform::is_gpu_place(dst_place) &&
               platform::is_gpu_place(src_place)) {
136
      auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
石晓伟 已提交
137 138 139 140 141
      memory::Copy(
          gpu_place, dst_data, gpu_place, src_data, size,
          static_cast<const platform::CUDADeviceContext&>(ctx).stream());
    }
#else
142 143
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "You must define PADDLE_WITH_CUDA for using CUDAPlace."));
石晓伟 已提交
144 145 146 147
#endif
  }
}

W
Wilber 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
void* GetLiteTensorDataPtr(paddle::lite_api::Tensor* src,
                           PrecisionType precision_type,
                           TargetType target_type) {
  void* res{nullptr};
  switch (precision_type) {
    case PrecisionType::kFloat:
      res = static_cast<void*>(src->mutable_data<float>(target_type));
      break;
    case PrecisionType::kInt8:
      res = static_cast<void*>(src->mutable_data<int8_t>(target_type));
      break;
    case PrecisionType::kInt32:
      res = static_cast<void*>(src->mutable_data<int32_t>(target_type));
      break;
    case PrecisionType::kInt64:
      res = static_cast<void*>(src->mutable_data<int64_t>(target_type));
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported precision type. Now only supports FP32, INT8, INT32 and "
          "INT64."));
      break;
  }
  return res;
}

int64_t GetLiteTensorNumel(const paddle::lite_api::Tensor& tensor) {
  auto shape = tensor.shape();
  int64_t numel = std::accumulate(shape.begin(), shape.end(), 1,
                                  std::multiplies<int64_t>());
  return numel;
}

void InitDstTensor(paddle::lite_api::Tensor* dst,
                   const framework::LoDTensor& src) {
石晓伟 已提交
183 184 185
  // Currently, Lite needs to explicitly specify the target type of
  // the input tensor.
  constexpr int empty_size = 0;
W
Wilber 已提交
186 187 188 189 190 191 192
  dst->Resize({empty_size});
  GetLiteTensorDataPtr(dst, GetLitePrecisionType(src.type()),
                       GetLiteTargetType(src.place()));
  dst->SetPrecision(GetLitePrecisionType(src.type()));
  paddle::lite::LoD lite_lod;
  SetLoD(&lite_lod, src.lod());
  dst->SetLoD(lite_lod);
石晓伟 已提交
193 194
}

W
Wilber 已提交
195 196
void InitDstTensor(framework::LoDTensor* dst,
                   const paddle::lite_api::Tensor& src) {
石晓伟 已提交
197 198 199 200 201 202 203 204
  constexpr framework::proto::VarType::Type dtype =
      framework::proto::VarType_Type_FP32;
  dst->mutable_data(inference::lite::utils::GetNativePlace(src.target()),
                    dtype);
  SetLoD(dst->mutable_lod(), src.lod());
}

template <>
W
Wilber 已提交
205 206
void TensorCopyAsync(paddle::lite_api::Tensor* dst,
                     const framework::LoDTensor& src,
石晓伟 已提交
207 208 209 210 211 212 213 214
                     const platform::DeviceContext& ctx) {
  InitDstTensor(dst, src);
  const platform::Place& src_place = src.place();
  const platform::Place& dst_place = GetNativePlace(dst->target());
  const size_t bytes =
      static_cast<size_t>(src.numel()) * framework::SizeOfType(src.type());
  dst->Resize(framework::vectorize(src.dims()));
  const void* src_data = src.data<void>();
W
Wilber 已提交
215 216 217
  void* dst_data{nullptr};
  dst_data = GetLiteTensorDataPtr(dst, GetLitePrecisionType(src.type()),
                                  GetLiteTargetType(src.place()));
218 219
  VLOG(3) << "[CopyAsync fluid -> lite] Bytes = " << bytes << ", src = " << &src
          << ", dst = " << dst << ", src_type = " << src.type();
石晓伟 已提交
220
  MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx);
W
Wilber 已提交
221
  VLOG(3) << "[Lite memory size] Bytes = " << bytes;
石晓伟 已提交
222 223 224
}

template <>
W
Wilber 已提交
225 226
void TensorCopyAsync(framework::LoDTensor* dst,
                     const paddle::lite_api::Tensor& src,
石晓伟 已提交
227
                     const platform::DeviceContext& ctx) {
W
Wilber 已提交
228
  dst->Resize(paddle::framework::make_ddim(src.shape()));
石晓伟 已提交
229 230 231
  InitDstTensor(dst, src);
  const platform::Place& src_place = GetNativePlace(src.target());
  const platform::Place& dst_place = dst->place();
W
Wilber 已提交
232 233 234
  int64_t src_numel = GetLiteTensorNumel(src);
  const size_t bytes = src_numel * framework::SizeOfType(dst->type());
  const void* src_data = src.data<void>();
石晓伟 已提交
235 236
  // When Lite is ready, the source type needs to be modified here.
  void* dst_data = dst->mutable_data(dst_place, dst->type());
237 238
  VLOG(3) << "[CopyAsync lite -> fluid] Bytes = " << bytes << ", src = " << &src
          << ", dst = " << dst << ", src_type = " << dst->type();
石晓伟 已提交
239
  MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx);
W
Wilber 已提交
240
  VLOG(3) << "[Lite memory size] Bytes = " << bytes;
石晓伟 已提交
241 242
}

243
template <>
W
Wilber 已提交
244
void TensorDataShare(paddle::lite_api::Tensor* dst, framework::LoDTensor* src) {
245
  dst->Resize(framework::vectorize(src->dims()));
W
Wilber 已提交
246 247 248 249 250 251
  dst->ShareExternalMemory(src->data<void>(), src->memory_size(),
                           GetLiteTargetType(src->place()));
  dst->SetPrecision(GetLitePrecisionType(src->type()));
  paddle::lite::LoD lite_lod;
  SetLoD(&lite_lod, src->lod());
  dst->SetLoD(lite_lod);
252 253 254
}

template <>
W
Wilber 已提交
255
void TensorDataShare(framework::LoDTensor* dst, paddle::lite_api::Tensor* src) {
256 257
  constexpr framework::proto::VarType::Type dtype =
      framework::proto::VarType_Type_FP32;
W
Wilber 已提交
258 259 260
  void* src_raw_data =
      GetLiteTensorDataPtr(src, GetLitePrecisionType(dtype), src->target());
  size_t memory_size = GetLiteTensorNumel(*src) * sizeof(float);
261
  std::shared_ptr<memory::allocation::Allocation> holder(
W
Wilber 已提交
262
      new memory::allocation::Allocation(src_raw_data, memory_size,
263
                                         GetNativePlace(src->target())));
W
Wilber 已提交
264
  dst->Resize(paddle::framework::make_ddim(src->shape()));
265 266 267 268
  SetLoD(dst->mutable_lod(), src->lod());
  dst->ResetHolderWithType(holder, dtype);
}

石晓伟 已提交
269 270 271 272
}  // namespace utils
}  // namespace lite
}  // namespace inference
}  // namespace paddle