tensor_utils.cc 8.7 KB
Newer Older
石晓伟 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/lite/tensor_utils.h"
#include <map>
17
#include <memory>
石晓伟 已提交
18 19
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/inference/lite/engine.h"
20
#include "paddle/fluid/memory/allocation/allocator.h"
石晓伟 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace inference {
namespace lite {
namespace utils {

using paddle::lite_api::TargetType;
using paddle::lite_api::PrecisionType;
using paddle::lite_api::DataLayoutType;

template <typename DstLoD, typename SrcLoD>
void SetLoD(DstLoD* dst, const SrcLoD& src) {
  dst->reserve(src.size());
  dst->clear();
  for (auto&& v : src) {
    dst->emplace_back(v);
  }
}
template void SetLoD<paddle::lite::LoD, framework::LoD>(
    paddle::lite::LoD* dst, const framework::LoD& src);
template void SetLoD<framework::LoD, paddle::lite::LoD>(
    framework::LoD* dst, const paddle::lite::LoD& src);

platform::Place GetNativePlace(const TargetType& type, int id = 0) {
  switch (type) {
    case TargetType::kHost:
    case TargetType::kX86:
      return platform::CPUPlace();
    case TargetType::kCUDA:
      return platform::CUDAPlace(id);
51 52 53
    case TargetType::kXPU:
      LOG(ERROR) << "No corresponding device for XPU yet.";
      return platform::Place();
石晓伟 已提交
54
    default:
55 56 57
      PADDLE_THROW(
          platform::errors::Unavailable("Unsupported target type. Now only "
                                        "supports Host, x86, CUDA target."));
石晓伟 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
      return platform::Place();
  }
}

TargetType GetLiteTargetType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return TargetType::kHost;
  }
  return TargetType::kCUDA;
}

PrecisionType GetLitePrecisionType(framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType_Type_FP32:
      return PrecisionType::kFloat;
    case framework::proto::VarType_Type_INT8:
      return PrecisionType::kInt8;
    case framework::proto::VarType_Type_INT32:
      return PrecisionType::kInt32;
    case framework::proto::VarType_Type_INT64:
      return PrecisionType::kInt64;
    default:
80 81 82
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported precision type. Now only supports FP32, INT8, INT32 and "
          "INT64."));
石晓伟 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
      return PrecisionType::kUnk;
  }
}

framework::proto::VarType::Type GetNativePrecisionType(
    const PrecisionType& type) {
  switch (type) {
    case PrecisionType::kFloat:
      return framework::proto::VarType_Type_FP32;
    case PrecisionType::kInt8:
      return framework::proto::VarType_Type_INT8;
    case PrecisionType::kInt32:
      return framework::proto::VarType_Type_INT32;
    case PrecisionType::kInt64:
      return framework::proto::VarType_Type_INT64;
    default:
99 100 101
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported precision type. Now only supports FP32, INT8, INT32 and "
          "INT64."));
石晓伟 已提交
102 103 104 105 106 107 108 109 110
      return static_cast<framework::proto::VarType::Type>(-1);
  }
}

framework::DataLayout GetNativeLayoutType(const DataLayoutType& type) {
  switch (type) {
    case DataLayoutType::kNCHW:
      return framework::DataLayout::kNCHW;
    default:
111 112
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported layout type. Now only supports NCHW."));
石晓伟 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126
      return static_cast<framework::DataLayout>(-1);
  }
}

void MemoryCopyAsync(const platform::Place& dst_place, void* dst_data,
                     const platform::Place& src_place, const void* src_data,
                     const size_t size, const platform::DeviceContext& ctx) {
  const platform::CPUPlace cpu_place;
  if (platform::is_cpu_place(dst_place) && platform::is_cpu_place(src_place)) {
    memory::Copy(cpu_place, dst_data, cpu_place, src_data, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    if (platform::is_cpu_place(dst_place) &&
        platform::is_gpu_place(src_place)) {
127 128
      PADDLE_THROW(platform::errors::Unimplemented(
          "Lite::MemoryCopy GPU->CPU is not yet implemented."));
石晓伟 已提交
129 130
    } else if (platform::is_gpu_place(dst_place) &&
               platform::is_cpu_place(src_place)) {
131 132
      PADDLE_THROW(platform::errors::Unimplemented(
          "Lite::MemoryCopy CPU->GPU is not yet implemented."));
石晓伟 已提交
133 134
    } else if (platform::is_gpu_place(dst_place) &&
               platform::is_gpu_place(src_place)) {
135
      auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
石晓伟 已提交
136 137 138 139 140
      memory::Copy(
          gpu_place, dst_data, gpu_place, src_data, size,
          static_cast<const platform::CUDADeviceContext&>(ctx).stream());
    }
#else
141 142
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "You must define PADDLE_WITH_CUDA for using CUDAPlace."));
石晓伟 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#endif
  }
}

void InitDstTensor(paddle::lite::Tensor* dst, const framework::LoDTensor& src) {
  // Currently, Lite needs to explicitly specify the target type of
  // the input tensor.
  constexpr int empty_size = 0;
  dst->mutable_data(GetLiteTargetType(src.place()), empty_size);
  dst->set_precision(GetLitePrecisionType(src.type()));
  SetLoD(dst->mutable_lod(), src.lod());
}

void InitDstTensor(framework::LoDTensor* dst, const paddle::lite::Tensor& src) {
  constexpr framework::proto::VarType::Type dtype =
      framework::proto::VarType_Type_FP32;
  dst->mutable_data(inference::lite::utils::GetNativePlace(src.target()),
                    dtype);
  SetLoD(dst->mutable_lod(), src.lod());
}

template <>
void TensorCopyAsync(paddle::lite::Tensor* dst, const framework::LoDTensor& src,
                     const platform::DeviceContext& ctx) {
  InitDstTensor(dst, src);
  const platform::Place& src_place = src.place();
  const platform::Place& dst_place = GetNativePlace(dst->target());
  const size_t bytes =
      static_cast<size_t>(src.numel()) * framework::SizeOfType(src.type());
  dst->Resize(framework::vectorize(src.dims()));
  const void* src_data = src.data<void>();
  void* dst_data = dst->mutable_data(bytes);
175 176
  VLOG(3) << "[CopyAsync fluid -> lite] Bytes = " << bytes << ", src = " << &src
          << ", dst = " << dst << ", src_type = " << src.type();
石晓伟 已提交
177
  MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx);
178
  VLOG(3) << "[Lite memory size] Bytes = " << dst->memory_size();
石晓伟 已提交
179 180 181 182 183
}

template <>
void TensorCopyAsync(framework::LoDTensor* dst, const paddle::lite::Tensor& src,
                     const platform::DeviceContext& ctx) {
W
Wilber 已提交
184
  dst->Resize(paddle::framework::make_ddim(src.dims().Vectorize()));
石晓伟 已提交
185 186 187 188 189 190 191 192
  InitDstTensor(dst, src);
  const platform::Place& src_place = GetNativePlace(src.target());
  const platform::Place& dst_place = dst->place();
  const size_t bytes =
      static_cast<size_t>(src.numel()) * framework::SizeOfType(dst->type());
  const void* src_data = src.raw_data();
  // When Lite is ready, the source type needs to be modified here.
  void* dst_data = dst->mutable_data(dst_place, dst->type());
193 194
  VLOG(3) << "[CopyAsync lite -> fluid] Bytes = " << bytes << ", src = " << &src
          << ", dst = " << dst << ", src_type = " << dst->type();
石晓伟 已提交
195
  MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx);
196
  VLOG(3) << "[Lite memory size] Bytes = " << src.memory_size();
石晓伟 已提交
197 198
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
template <>
void TensorDataShare(paddle::lite::Tensor* dst, framework::LoDTensor* src) {
  const size_t bytes =
      static_cast<size_t>(src->numel()) * framework::SizeOfType(src->type());
  auto buf = std::make_shared<paddle::lite::Buffer>(paddle::lite::Buffer(
      src->data<void>(), GetLiteTargetType(src->place()), src->memory_size()));
  dst->Resize(framework::vectorize(src->dims()));
  dst->set_precision(GetLitePrecisionType(src->type()));
  SetLoD(dst->mutable_lod(), src->lod());
  dst->ResetBuffer(buf, bytes);
}

template <>
void TensorDataShare(framework::LoDTensor* dst, paddle::lite::Tensor* src) {
  constexpr framework::proto::VarType::Type dtype =
      framework::proto::VarType_Type_FP32;
  void* src_raw_data = src->raw_data();
  std::shared_ptr<memory::allocation::Allocation> holder(
      new memory::allocation::Allocation(src_raw_data, src->memory_size(),
                                         GetNativePlace(src->target())));
  dst->Resize(paddle::framework::make_ddim(src->dims().Vectorize()));
  SetLoD(dst->mutable_lod(), src->lod());
  dst->ResetHolderWithType(holder, dtype);
}

石晓伟 已提交
224 225 226 227
}  // namespace utils
}  // namespace lite
}  // namespace inference
}  // namespace paddle