c_allreduce_op.h 17.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17

#include <string>
18

19
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
20 21 22
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
23 24
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
25
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
26
#include "paddle/phi/api/include/tensor.h"
27

Z
zn 已提交
28 29 30
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||          \
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_XPU_BKCL) || \
    defined(PADDLE_WITH_CNCL)
31
#include "paddle/fluid/platform/collective_helper.h"
32 33 34
#endif

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
35
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
36 37
#endif

38
#if defined(PADDLE_WITH_XPU_BKCL)
39
#include "paddle/fluid/platform/device/xpu/bkcl_helper.h"
40 41
#endif

42 43
#if defined(PADDLE_WITH_GLOO)
#include <gloo/allreduce.h>
44

45 46 47
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif

48
#if defined(PADDLE_WITH_ASCEND_CL)
49
#include "paddle/fluid/platform/device/npu/hccl_helper.h"
50 51
#endif

Z
zn 已提交
52 53 54 55
#if defined(PADDLE_WITH_CNCL)
#include "paddle/fluid/platform/device/mlu/cncl_helper.h"
#endif

56 57 58 59
#if defined(PADDLE_WITH_ASCEND_CL)
DECLARE_bool(hccl_check_nan);
#endif

60 61 62
namespace paddle {
namespace operators {

63 64 65 66 67 68 69 70 71 72 73 74 75
enum ReduceType { kRedSum, kRedMax, kRedMin, kRedProd };

class CAllReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
76 77
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
78 79 80 81 82 83 84
  }
};

template <ReduceType red_type, typename T>
class CAllReduceOpCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
85 86 87 88 89 90 91 92 93 94
#if defined(PADDLE_WITH_GLOO)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    int64_t send_numel = in->numel();
    const T* send_buff = in->data<T>();
    T* recv_buff = out->mutable_data<T>(in->dims(), place);
    auto gloo = paddle::framework::GlooWrapper::GetInstance();
    PADDLE_ENFORCE_EQ(
95 96
        gloo->IsInitialized(),
        true,
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        platform::errors::PreconditionNotMet(
            "You must initialize the gloo environment first to use it."));
    gloo::AllreduceOptions opts(gloo->GetContext());
    opts.setInput(const_cast<T*>(send_buff), send_numel);
    opts.setOutput(recv_buff, send_numel);
    switch (red_type) {
      case kRedSum:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::sum<T>));
        break;
      case kRedMax:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::max<T>));
        break;
      case kRedMin:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::min<T>));
        break;
      case kRedProd:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::product<T>));
        break;
      default:
124 125
        PADDLE_ENFORCE_EQ(true,
                          false,
126 127 128 129 130 131 132 133
                          platform::errors::InvalidArgument(
                              "Invalid reduce type: %d.", red_type));
    }
    gloo::allreduce(opts);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should compile with GLOO by setting WITH_GLOO=ON"));
#endif
134 135 136
  }
};

137
#if defined(PADDLE_WITH_ASCEND_CL)
138 139 140 141
// return true if found_nan or return false;
inline bool ContainsNan(const paddle::platform::NPUDeviceContext& dev_ctx,
                        aclrtStream stream,
                        const paddle::framework::Tensor* in) {
142 143
  using Tensor = paddle::framework::Tensor;
  Tensor out(in->type());
144

145 146 147 148 149 150 151
  Tensor mean(in->type());
  mean.Resize({1});
  mean.mutable_data<float>(dev_ctx.GetPlace());
  std::vector<int> axes;
  for (int i = 0; i < in->dims().size(); ++i) {
    axes.push_back(i);
  }
152

153
  std::vector<float> vec;
154
  try {
155 156
    const auto& runner_mean = paddle::operators::NpuOpRunner(
        "ReduceMeanD", {*in}, {mean}, {{"axes", axes}, {"keep_dims", false}});
157
    paddle::framework::TensorToVector(mean, dev_ctx, &vec);
158
  } catch (...) {
159 160 161 162 163 164 165 166 167 168 169 170
    LOG(WARNING) << "ContainsNan catch exception";
    return true;
  }

  VLOG(4) << "reducemeand result:" << vec[0];
  if (std::isnan(static_cast<float>(vec[0]))) {
    LOG(WARNING) << "ContainsNan detects nan";
    return true;
  }

  if (std::isinf(static_cast<float>(vec[0]))) {
    LOG(WARNING) << "ContainsNan detects inf";
171 172
  }

173
  return false;
174
}
175

176 177
#endif

178 179 180 181 182
template <ReduceType red_type, typename T>
class CAllReduceOpASCENDKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)
183 184
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");
185
    auto place = ctx.GetPlace();
186 187
    HcclDataType dtype =
        platform::ToHCCLDataType(framework::TransToProtoVarType(in->dtype()));
188 189 190
    int64_t numel = in->numel();

    void* sendbuff = reinterpret_cast<void*>(const_cast<T*>(in->data<T>()));
191
    out->mutable_data<T>(in->dims(), ctx.GetPlace());
192 193 194 195 196 197 198 199 200
    void* recvbuff = reinterpret_cast<void*>(out->data<T>());

    int ring_id = ctx.Attr<int>("ring_id");
    std::string group =
        std::string(HCOM_GROUP_PREFIX) + std::to_string(ring_id);
    auto comm =
        paddle::platform::HCCLCommContext::Instance().Get(ring_id, place);

    aclrtStream stream = nullptr;
201 202
    auto dev_ctx = static_cast<platform::NPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
203
    if (ctx.Attr<bool>("use_calc_stream")) {
204
      stream = dev_ctx->stream();
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    } else {
      stream = comm->stream();
    }

    HcclReduceOp hccl_red_type = HCCL_REDUCE_SUM;
    switch (red_type) {
      case kRedSum:
        hccl_red_type = HCCL_REDUCE_SUM;
        break;

      case kRedMax:
        hccl_red_type = HCCL_REDUCE_MAX;
        break;

      case kRedMin:
        hccl_red_type = HCCL_REDUCE_MIN;
        break;

      case kRedProd:
        hccl_red_type = HCCL_REDUCE_PROD;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

232 233 234 235 236 237 238 239 240 241 242
    VLOG(3) << "hccl allreduce, parameter is: "
            << "input num: " << in->dims() << "dtype: " << dtype
            << "hccl_red_type: " << hccl_red_type << ", group is: " << group
            << ", sendbuff:" << sendbuff << ", recvbuff:" << recvbuff
            << ", out_size:" << out->memory_size()
            << ", use_calc_stream:" << ctx.Attr<bool>("use_calc_stream")
            << ", stream:" << stream;

    framework::Tensor tmp;
    tmp.mutable_data<float>({8}, ctx.GetPlace());

243
    bool found_nan = false;
244

245
    auto d_type = framework::TransToProtoVarType(in->dtype());
246
    switch (d_type) {
247 248 249
      case framework::proto::VarType::FP16: {
        break;
      }
250
      case framework::proto::VarType::FP32: {
251 252
        if (FLAGS_hccl_check_nan) {
          VLOG(3) << "prepare to FoundNanInf";
Y
Yuang Liu 已提交
253 254
          // NOTE: performance relating, DO NOT REMOVE!
          ContainsNan(*dev_ctx, dev_ctx->stream(), in);
255
        }
256 257 258 259 260 261
        break;
      }
      default:
        break;
    }

262
    if (found_nan) {
263 264 265 266 267 268 269 270 271
      T inf = static_cast<T>(std::numeric_limits<float>::infinity());
      VLOG(4) << "fill input data constant inf";
      auto dims = in->dims();
      auto mutable_in = const_cast<framework::Tensor*>(in);
      FillNpuTensorWithConstant<T>(mutable_in, inf);
      mutable_in->Resize(dims);
    }

    VLOG(3) << "hccl allreduce, parameter is: "
272
            << "input num: " << numel << "dtype: " << dtype
273 274 275
            << "hccl_red_type: " << hccl_red_type << ", group is: " << group
            << ", sendbuff:" << sendbuff << ", recvbuff:" << recvbuff
            << ", out_size:" << out->memory_size();
276

277 278 279 280 281 282 283 284
    PADDLE_ENFORCE_NPU_SUCCESS(
        platform::dynload::HcclAllReduce(sendbuff,
                                         recvbuff,
                                         numel,
                                         dtype,
                                         hccl_red_type,
                                         comm->comm(),
                                         reinterpret_cast<void*>(stream)));
285 286 287 288 289 290 291 292 293

    out->Resize(in->dims());
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with NPU."));
#endif
  }
};

294 295 296 297 298 299 300 301 302
template <ReduceType red_type, typename T>
class CAllReduceOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
303 304
    BKCLDataType dtype =
        platform::ToBKCLDataType(framework::TransToProtoVarType(in->dtype()));
305
    int64_t numel = in->numel();
306
    const void* sendbuff = in->data<T>();
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
    auto comm = platform::BKCLCommContext::Instance().Get(rid, place);

    XPUStream stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::XPUDeviceContext*>(dev_ctx)
                   ->x_context()
                   ->xpu_stream;
    } else {
      stream = comm->stream();
    }

    BKCLOp bkcl_red_type = BKCL_ADD;
    switch (red_type) {
      case kRedSum:
        bkcl_red_type = BKCL_ADD;
        break;

      case kRedMax:
        bkcl_red_type = BKCL_MAX;
        break;

      case kRedMin:
        bkcl_red_type = BKCL_MIN;
        break;

      case kRedProd:
        bkcl_red_type = BKCL_PRODUCT;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

346
    PADDLE_ENFORCE_EQ(
347 348 349 350 351 352 353
        bkcl_all_reduce(comm->comm(),
                        sendbuff,
                        recvbuff,
                        numel,
                        dtype,
                        bkcl_red_type,
                        stream),
354 355
        BKCL_SUCCESS,
        platform::errors::PreconditionNotMet("BKCL all reduce failed"));
356 357 358 359 360 361 362
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should be compiled with XPU."));
#endif
  }
};

363 364
template <ReduceType red_type, typename T>
class CAllReduceOpCUDAKernel : public framework::OpKernel<T> {
365 366
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
367
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
368 369
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");
370
    int rid = ctx.Attr<int>("ring_id");
371

372
    auto place = ctx.GetPlace();
373 374
    ncclDataType_t dtype =
        platform::ToNCCLDataType(framework::TransToProtoVarType(in->dtype()));
375
    int64_t numel = in->numel();
376
    const void* sendbuff = in->data<T>();
377 378 379
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    auto map = distributed::ProcessGroupMapFromGid::getInstance();
    if (map->has(rid)) {
      // Use ProcessGroup
      distributed::ProcessGroup* pg = map->get(rid);
      std::vector<phi::DenseTensor> in_tensor;
      std::vector<phi::DenseTensor> out_tensor;
      in_tensor.push_back(*in);
      out_tensor.push_back(*out);

      distributed::AllreduceOptions opts;
      switch (red_type) {
        case kRedSum:
          opts.reduce_op = distributed::ReduceOp::SUM;
          break;

        case kRedMax:
          opts.reduce_op = distributed::ReduceOp::MAX;
          break;

        case kRedMin:
          opts.reduce_op = distributed::ReduceOp::MIN;
          break;

        case kRedProd:
          opts.reduce_op = distributed::ReduceOp::PRODUCT;
          break;

        default:
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Invalid reduce type: %d", red_type));
      }

      auto task = pg->AllReduce(in_tensor, out_tensor, opts);
      task->Wait();
      return;
    }

417
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
418

419
    gpuStream_t stream = nullptr;
420 421
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
L
Leo Chen 已提交
422
      stream = static_cast<phi::GPUContext*>(dev_ctx)->stream();
423 424 425
    } else {
      stream = comm->stream();
    }
426 427 428 429
    VLOG(10) << "all reduce buffer:" << sendbuff << ", numel:" << numel
             << ", redtype:" << static_cast<int>(red_type)
             << ", dtype:" << dtype << ", comm:" << comm
             << ", stream:" << stream;
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    ncclRedOp_t nccl_red_type = ncclSum;
    switch (red_type) {
      case kRedSum:
        nccl_red_type = ncclSum;
        break;

      case kRedMax:
        nccl_red_type = ncclMax;
        break;

      case kRedMin:
        nccl_red_type = ncclMin;
        break;

      case kRedProd:
        nccl_red_type = ncclProd;
        break;

      default:
M
MRXLT 已提交
450 451
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
452 453
    }

454
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
455
        sendbuff, recvbuff, numel, dtype, nccl_red_type, comm->comm(), stream));
456
#else
M
MRXLT 已提交
457 458
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with GPU."));
459 460 461 462
#endif
  }
};

Z
zn 已提交
463 464 465 466 467 468 469 470 471 472
template <ReduceType red_type, typename T>
class CAllReduceOpMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_CNCL)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    cnclDataType_t dtype =
Z
zn 已提交
473
        platform::ToCNCLDataType(framework::TransToProtoVarType(in->dtype()));
Z
zn 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    int64_t numel = in->numel();
    const void* sendbuff = in->data<T>();
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
    auto comm = platform::CNCLCommContext::Instance().Get(rid, place);

    mluStream stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::MLUDeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

    cnclReduceOp_t cncl_red_type = cnclSum;
    switch (red_type) {
      case kRedSum:
        cncl_red_type = cnclSum;
        break;

      case kRedMax:
        cncl_red_type = cnclMax;
        break;

      case kRedMin:
        cncl_red_type = cnclMin;
        break;

      case kRedProd:
        cncl_red_type = cnclProd;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

    PADDLE_ENFORCE_MLU_SUCCESS(cnclAllReduce(
        sendbuff, recvbuff, numel, dtype, cncl_red_type, comm->comm(), stream));
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with MLU."));
#endif
  }
};

522 523 524 525 526 527 528
class CAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor), tensor to be allreduced.");
    AddOutput("Out", "(Tensor) the allreduced result.");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
529 530 531 532
#if defined(PADDLE_WITH_ASCEND_CL)
    AddAttr<std::string>("tag", "(string default tag) tag for all reduce.")
        .SetDefault("tag");
#endif
533 534 535 536
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
L
lilong12 已提交
537 538 539 540 541 542
    AddAttr<bool>(
        "use_model_parallel",
        "(bool default false) use this op with model parallel mode. In model "
        "parallel mode, the backward is c_identity which returns itself for "
        "c_allreduce_sum.")
        .SetDefault(false);
543 544 545 546 547 548 549
    AddComment(string::Sprintf(R"DOC(
CAllReduce %s Operator

Call collective AllReduce with reduce type %s. If input and output are
the same variable, in-place allreduce will be used.
Reference: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html#allreduce
)DOC",
550 551
                               GetName(),
                               GetName()));
552 553 554 555 556 557
  }

 protected:
  virtual std::string GetName() const = 0;
};

558 559
}  // namespace operators
}  // namespace paddle