c_allreduce_op.h 13.6 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17

#include <string>
18 19 20 21

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
22 23
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
24
#include "paddle/fluid/operators/npu_op_runner.h"
25

26
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
27
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_XPU_BKCL)
28
#include "paddle/fluid/platform/collective_helper.h"
29 30 31
#endif

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
32 33 34
#include "paddle/fluid/platform/nccl_helper.h"
#endif

35 36 37 38
#if defined(PADDLE_WITH_XPU_BKCL)
#include "paddle/fluid/platform/bkcl_helper.h"
#endif

39 40 41 42 43
#if defined(PADDLE_WITH_GLOO)
#include <gloo/allreduce.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif

44 45 46 47
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/platform/hccl_helper.h"
#endif

48 49 50 51
#if defined(PADDLE_WITH_ASCEND_CL)
DECLARE_bool(hccl_check_nan);
#endif

52 53 54
namespace paddle {
namespace operators {

55 56 57 58 59 60 61 62 63 64 65 66 67
enum ReduceType { kRedSum, kRedMax, kRedMin, kRedProd };

class CAllReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
68 69
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
70 71 72 73 74 75 76
  }
};

template <ReduceType red_type, typename T>
class CAllReduceOpCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#if defined(PADDLE_WITH_GLOO)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    int64_t send_numel = in->numel();
    const T* send_buff = in->data<T>();
    T* recv_buff = out->mutable_data<T>(in->dims(), place);
    auto gloo = paddle::framework::GlooWrapper::GetInstance();
    PADDLE_ENFORCE_EQ(
        gloo->IsInitialized(), true,
        platform::errors::PreconditionNotMet(
            "You must initialize the gloo environment first to use it."));
    gloo::AllreduceOptions opts(gloo->GetContext());
    opts.setInput(const_cast<T*>(send_buff), send_numel);
    opts.setOutput(recv_buff, send_numel);
    switch (red_type) {
      case kRedSum:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::sum<T>));
        break;
      case kRedMax:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::max<T>));
        break;
      case kRedMin:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::min<T>));
        break;
      case kRedProd:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::product<T>));
        break;
      default:
        PADDLE_ENFORCE_EQ(true, false,
                          platform::errors::InvalidArgument(
                              "Invalid reduce type: %d.", red_type));
    }
    gloo::allreduce(opts);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should compile with GLOO by setting WITH_GLOO=ON"));
#endif
124 125 126
  }
};

127
#if defined(PADDLE_WITH_ASCEND_CL)
128 129 130 131
// return true if found_nan or return false;
inline bool ContainsNan(const paddle::platform::NPUDeviceContext& dev_ctx,
                        aclrtStream stream,
                        const paddle::framework::Tensor* in) {
132 133
  using Tensor = paddle::framework::Tensor;
  Tensor out(in->type());
134

135 136 137 138 139 140 141
  Tensor mean(in->type());
  mean.Resize({1});
  mean.mutable_data<float>(dev_ctx.GetPlace());
  std::vector<int> axes;
  for (int i = 0; i < in->dims().size(); ++i) {
    axes.push_back(i);
  }
142

143
  std::vector<float> vec;
144
  try {
145 146 147
    const auto& runner_mean = paddle::operators::NpuOpRunner(
        "ReduceMeanD", {*in}, {mean}, {{"axes", axes}, {"keep_dims", false}});
    TensorToVector(mean, dev_ctx, &vec);
148
  } catch (...) {
149 150 151 152 153 154 155 156 157 158 159 160
    LOG(WARNING) << "ContainsNan catch exception";
    return true;
  }

  VLOG(4) << "reducemeand result:" << vec[0];
  if (std::isnan(static_cast<float>(vec[0]))) {
    LOG(WARNING) << "ContainsNan detects nan";
    return true;
  }

  if (std::isinf(static_cast<float>(vec[0]))) {
    LOG(WARNING) << "ContainsNan detects inf";
161 162
  }

163
  return false;
164
}
165

166 167
#endif

168 169 170 171 172
template <ReduceType red_type, typename T>
class CAllReduceOpASCENDKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)
173 174
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");
175 176 177 178 179
    auto place = ctx.GetPlace();
    HcclDataType dtype = platform::ToHCCLDataType(in->type());
    int64_t numel = in->numel();

    void* sendbuff = reinterpret_cast<void*>(const_cast<T*>(in->data<T>()));
180
    out->mutable_data<T>(in->dims(), ctx.GetPlace());
181 182 183 184 185 186 187 188 189
    void* recvbuff = reinterpret_cast<void*>(out->data<T>());

    int ring_id = ctx.Attr<int>("ring_id");
    std::string group =
        std::string(HCOM_GROUP_PREFIX) + std::to_string(ring_id);
    auto comm =
        paddle::platform::HCCLCommContext::Instance().Get(ring_id, place);

    aclrtStream stream = nullptr;
190 191
    auto dev_ctx = static_cast<platform::NPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
192
    if (ctx.Attr<bool>("use_calc_stream")) {
193
      stream = dev_ctx->stream();
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    } else {
      stream = comm->stream();
    }

    HcclReduceOp hccl_red_type = HCCL_REDUCE_SUM;
    switch (red_type) {
      case kRedSum:
        hccl_red_type = HCCL_REDUCE_SUM;
        break;

      case kRedMax:
        hccl_red_type = HCCL_REDUCE_MAX;
        break;

      case kRedMin:
        hccl_red_type = HCCL_REDUCE_MIN;
        break;

      case kRedProd:
        hccl_red_type = HCCL_REDUCE_PROD;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

221 222 223 224 225 226 227 228 229 230 231
    VLOG(3) << "hccl allreduce, parameter is: "
            << "input num: " << in->dims() << "dtype: " << dtype
            << "hccl_red_type: " << hccl_red_type << ", group is: " << group
            << ", sendbuff:" << sendbuff << ", recvbuff:" << recvbuff
            << ", out_size:" << out->memory_size()
            << ", use_calc_stream:" << ctx.Attr<bool>("use_calc_stream")
            << ", stream:" << stream;

    framework::Tensor tmp;
    tmp.mutable_data<float>({8}, ctx.GetPlace());

232
    bool found_nan = false;
233 234 235

    auto d_type = in->type();
    switch (d_type) {
236 237 238
      case framework::proto::VarType::FP16: {
        break;
      }
239
      case framework::proto::VarType::FP32: {
240 241
        if (FLAGS_hccl_check_nan) {
          VLOG(3) << "prepare to FoundNanInf";
Y
Yuang Liu 已提交
242 243
          // NOTE: performance relating, DO NOT REMOVE!
          ContainsNan(*dev_ctx, dev_ctx->stream(), in);
244
        }
245 246 247 248 249 250
        break;
      }
      default:
        break;
    }

251
    if (found_nan) {
252 253 254 255 256 257 258 259 260
      T inf = static_cast<T>(std::numeric_limits<float>::infinity());
      VLOG(4) << "fill input data constant inf";
      auto dims = in->dims();
      auto mutable_in = const_cast<framework::Tensor*>(in);
      FillNpuTensorWithConstant<T>(mutable_in, inf);
      mutable_in->Resize(dims);
    }

    VLOG(3) << "hccl allreduce, parameter is: "
261
            << "input num: " << numel << "dtype: " << dtype
262 263 264
            << "hccl_red_type: " << hccl_red_type << ", group is: " << group
            << ", sendbuff:" << sendbuff << ", recvbuff:" << recvbuff
            << ", out_size:" << out->memory_size();
265 266 267 268 269 270 271 272 273 274 275 276 277

    PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllReduce(
        sendbuff, recvbuff, numel, dtype, hccl_red_type, comm->comm(),
        reinterpret_cast<void*>(stream)));

    out->Resize(in->dims());
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with NPU."));
#endif
  }
};

278 279 280 281 282 283 284 285 286 287 288
template <ReduceType red_type, typename T>
class CAllReduceOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    BKCLDataType dtype = platform::ToBKCLDataType(in->type());
    int64_t numel = in->numel();
289
    const void* sendbuff = in->data<T>();
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
    auto comm = platform::BKCLCommContext::Instance().Get(rid, place);

    XPUStream stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::XPUDeviceContext*>(dev_ctx)
                   ->x_context()
                   ->xpu_stream;
    } else {
      stream = comm->stream();
    }

    BKCLOp bkcl_red_type = BKCL_ADD;
    switch (red_type) {
      case kRedSum:
        bkcl_red_type = BKCL_ADD;
        break;

      case kRedMax:
        bkcl_red_type = BKCL_MAX;
        break;

      case kRedMin:
        bkcl_red_type = BKCL_MIN;
        break;

      case kRedProd:
        bkcl_red_type = BKCL_PRODUCT;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

    PADDLE_ENFORCE_EQ(bkcl_all_reduce(comm->comm(), sendbuff, recvbuff, numel,
                                      dtype, bkcl_red_type, stream),
                      BKCL_SUCCESS, platform::errors::PreconditionNotMet(
                                        "BKCL all reduce failed"));
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should be compiled with XPU."));
#endif
  }
};

340 341
template <ReduceType red_type, typename T>
class CAllReduceOpCUDAKernel : public framework::OpKernel<T> {
342 343
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
344
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
345 346 347
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

348
    auto place = ctx.GetPlace();
349 350
    ncclDataType_t dtype = platform::ToNCCLDataType(in->type());
    int64_t numel = in->numel();
351
    const void* sendbuff = in->data<T>();
352 353 354 355
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
356
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
357

358
    gpuStream_t stream = nullptr;
359 360 361 362 363 364 365
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    ncclRedOp_t nccl_red_type = ncclSum;
    switch (red_type) {
      case kRedSum:
        nccl_red_type = ncclSum;
        break;

      case kRedMax:
        nccl_red_type = ncclMax;
        break;

      case kRedMin:
        nccl_red_type = ncclMin;
        break;

      case kRedProd:
        nccl_red_type = ncclProd;
        break;

      default:
M
MRXLT 已提交
385 386
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
387 388
    }

389
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
390
        sendbuff, recvbuff, numel, dtype, nccl_red_type, comm->comm(), stream));
391
#else
M
MRXLT 已提交
392 393
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with GPU."));
394 395 396 397
#endif
  }
};

398 399 400 401 402 403 404
class CAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor), tensor to be allreduced.");
    AddOutput("Out", "(Tensor) the allreduced result.");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
405 406 407 408
#if defined(PADDLE_WITH_ASCEND_CL)
    AddAttr<std::string>("tag", "(string default tag) tag for all reduce.")
        .SetDefault("tag");
#endif
409 410 411 412
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
L
lilong12 已提交
413 414 415 416 417 418
    AddAttr<bool>(
        "use_model_parallel",
        "(bool default false) use this op with model parallel mode. In model "
        "parallel mode, the backward is c_identity which returns itself for "
        "c_allreduce_sum.")
        .SetDefault(false);
419 420 421 422 423 424 425 426 427 428 429 430 431 432
    AddComment(string::Sprintf(R"DOC(
CAllReduce %s Operator

Call collective AllReduce with reduce type %s. If input and output are
the same variable, in-place allreduce will be used.
Reference: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html#allreduce
)DOC",
                               GetName(), GetName()));
  }

 protected:
  virtual std::string GetName() const = 0;
};

433 434
}  // namespace operators
}  // namespace paddle