lerp_op.cc 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/lerp_op.h"

namespace paddle {
namespace operators {

class LerpOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "lerp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "lerp");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "lerp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "lerp");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto w_dims = ctx->GetInputDim("Weight");
    framework::DDim out_dims;
    out_dims = GetOutputDims(x_dims, y_dims);
    if (w_dims.size() > 1 || w_dims[0] != 1) {
      out_dims = GetOutputDims(out_dims, w_dims);
    }

    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 private:
  framework::DDim GetOutputDims(const framework::DDim& s_dims,
                                const framework::DDim& l_dims) const {
    if (s_dims.size() > l_dims.size()) {
      return GetOutputDims(l_dims, s_dims);
    }
    std::vector<int64_t> shapes = framework::vectorize<int64_t>(l_dims);
    for (int i = s_dims.size() - 1, j = l_dims.size() - 1; i >= 0; --i, --j) {
      int64_t s = s_dims[i];
      int64_t l = l_dims[j];
      if (s != l) {
        if (l == 1) {
          shapes[j] = s;
        } else if (s != 1) {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The shape of tensor a %s:%d must match shape of tensor b "
              "%s:%d.",
              s_dims.to_str(), i, l_dims.to_str(), j));
        }
      }
    }
    return framework::make_ddim(shapes);
  }
};

class LerpOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor), The input tensor of lerp op.");
    AddInput("Y", "(Tensor), The input tensor of lerp op.");
    AddInput("Weight", "(Tensor, optional), The input tensor of lerp op.");
    AddOutput("Out", "(Tensor), The output tensor of lerp op.");
    AddComment(R"DOC(
Lerp Operator.

This operator is used to do a linear interpolation of input $X$ and $Y$ with $Weight$.

The equation is:

$$Out = X + Weight * (Y - X)$$

Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.

)DOC");
  }
};

class LerpGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    }
    if (ctx->HasOutput(framework::GradVarName("Y"))) {
      ctx->SetOutputDim(framework::GradVarName("Y"), ctx->GetInputDim("Y"));
    }
  }
};

template <typename T>
class LerpOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> op) const override {
    op->SetType("lerp_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("Weight", this->Input("Weight"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};

DECLARE_INPLACE_OP_INFERER(LerpInplaceInferer, {"X", "Out"});

}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(
    lerp, paddle::operators::LerpOp, paddle::operators::LerpOpMaker,
    paddle::operators::LerpOpGradMaker<paddle::framework::OpDesc>,
    paddle::operators::LerpOpGradMaker<paddle::imperative::OpBase>,
    paddle::operators::LerpInplaceInferer);

REGISTER_OPERATOR(lerp_grad, paddle::operators::LerpGradOp);

REGISTER_OP_CPU_KERNEL(
    lerp,
    paddle::operators::LerpKernel<paddle::platform::CPUDeviceContext, float>,
    paddle::operators::LerpKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    lerp_grad,
    paddle::operators::LerpGradKernel<paddle::platform::CPUDeviceContext,
                                      float>,
    paddle::operators::LerpGradKernel<paddle::platform::CPUDeviceContext,
                                      double>);