// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/lerp_op.h" namespace paddle { namespace operators { class LerpOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "lerp"); OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "lerp"); OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "lerp"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "lerp"); auto x_dims = ctx->GetInputDim("X"); auto y_dims = ctx->GetInputDim("Y"); auto w_dims = ctx->GetInputDim("Weight"); framework::DDim out_dims; out_dims = GetOutputDims(x_dims, y_dims); if (w_dims.size() > 1 || w_dims[0] != 1) { out_dims = GetOutputDims(out_dims, w_dims); } ctx->SetOutputDim("Out", out_dims); ctx->ShareLoD("X", /*->*/ "Out"); } private: framework::DDim GetOutputDims(const framework::DDim& s_dims, const framework::DDim& l_dims) const { if (s_dims.size() > l_dims.size()) { return GetOutputDims(l_dims, s_dims); } std::vector shapes = framework::vectorize(l_dims); for (int i = s_dims.size() - 1, j = l_dims.size() - 1; i >= 0; --i, --j) { int64_t s = s_dims[i]; int64_t l = l_dims[j]; if (s != l) { if (l == 1) { shapes[j] = s; } else if (s != 1) { PADDLE_THROW(platform::errors::InvalidArgument( "The shape of tensor a %s:%d must match shape of tensor b " "%s:%d.", s_dims.to_str(), i, l_dims.to_str(), j)); } } } return framework::make_ddim(shapes); } }; class LerpOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of lerp op."); AddInput("Y", "(Tensor), The input tensor of lerp op."); AddInput("Weight", "(Tensor, optional), The input tensor of lerp op."); AddOutput("Out", "(Tensor), The output tensor of lerp op."); AddComment(R"DOC( Lerp Operator. This operator is used to do a linear interpolation of input $X$ and $Y$ with $Weight$. The equation is: $$Out = X + Weight * (Y - X)$$ Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $X$. )DOC"); } }; class LerpGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { if (ctx->HasOutput(framework::GradVarName("X"))) { ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } if (ctx->HasOutput(framework::GradVarName("Y"))) { ctx->SetOutputDim(framework::GradVarName("Y"), ctx->GetInputDim("Y")); } } }; template class LerpOpGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; void Apply(GradOpPtr op) const override { op->SetType("lerp_grad"); op->SetInput("X", this->Input("X")); op->SetInput("Y", this->Input("Y")); op->SetInput("Weight", this->Input("Weight")); op->SetInput("Out", this->Output("Out")); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y")); op->SetAttrMap(this->Attrs()); } }; DECLARE_INPLACE_OP_INFERER(LerpInplaceInferer, {"X", "Out"}); } // namespace operators } // namespace paddle REGISTER_OPERATOR( lerp, paddle::operators::LerpOp, paddle::operators::LerpOpMaker, paddle::operators::LerpOpGradMaker, paddle::operators::LerpOpGradMaker, paddle::operators::LerpInplaceInferer); REGISTER_OPERATOR(lerp_grad, paddle::operators::LerpGradOp); REGISTER_OP_CPU_KERNEL( lerp, paddle::operators::LerpKernel, paddle::operators::LerpKernel); REGISTER_OP_CPU_KERNEL( lerp_grad, paddle::operators::LerpGradKernel, paddle::operators::LerpGradKernel);